APTITUDE

1.	Who became the first Indian to win three medals in successive ISSF shooting world cup held recently? (1) Abhinav Bindra (2) Gagan Narang (3) Jitu Rai (4) Vijay Kumar	1.	अभी हाल ही में आयोजित ISSF श्रूटिंग विश्व कप में लगातार तीन मेडल जीतने वाला पहला भारतीय खिलाड़ी कौन बना? (1) अभिनव बिन्द्रा (2) गगन नारंग (3) जितू रॉय (4) विजय कुमार
2.	Recently, the plan to build the world most powerful and largest telescope 'ATLAST' to analyse the environment of other planets and to track the existence of aliens life, was unveiled. This is planned by:	2.	अभी हाल ही में विश्व का सर्वाधिक शक्तिशाली एवं सबसे बड़ा टेलीस्कोप 'ATLAST' के निर्माण करने की योजना, जिसके द्वारा दूसरे ग्रहों के वातावरण एवं दूसरे ग्रहों के प्राणी की जीवन की विद्यमानता खोजने एवं विश्लेषण करना है, का अनावरण किया गया। यह किसकी योजना है:
	(1) FKA & RKA (2) ESA (3) ISRO (4) NASA		(1) FKA & RKA (2) ESA (3) ISRO (4) NASA
3.	Who bagged the FIDE World Rapid Chess Championship title recently held in Dubai?	3.	अभी हाल ही में किसने दुबई में आयोजित FIDE विश्व रैपिड शतरंज चैम्पियनशिप की उपाधि जीती?
	(1) Fabiani Caruana(2) Vishwanathan Anand(3) Magnus Carlsen(4) Vladimir Kramnik		(1) फैबीयानी करूआना (2) विश्वनाथन आनन्द (3) मैग्नस कार्लसन (4) व्लादमीर क्रामनिक
4.	Who won the world food prize for the year 2014? (1) Dr. Sanjaya Rajaram (2) Dr. Aditi Mukherji (3) Dr. Charity Kawira Mutegi (4) Dr. Norman Borlaug	4.	वर्ष 2014 के लिए विश्व खाद्य पुरस्कार किसने जीता? (1) डॉ. संजया राजाराम (2) डॉ. अदिती मुखर्जी (3) डॉ. चैरिटी कवीरा मुटेगी (4) डॉ. नारमैन वोरलॉग
5.	India's first 'one stop crisis centre' for women who are victims of violence named 'Gauravi' was launched recently by?	5.	महिलाएं जो हिंसा की शिकार हैं, उनके लिए भारत का पहला 'वन स्टॉप क्राईसिस सेन्टर' जिसका नाम 'गौरवी' है, को अभी हाल ही में द्वारा में शुभारम्भ किया गयाः
	 Film Actor Amir Khan, Bhopal Film Actor Shahrukh Khan, Mumbai Film Actor Amitabh Bachhan, Allhabad Film Actress Hema Malini, Agra 		 (1) फिल्म अभिनेता आमिर खान, भोपाल (2) फिल्म अभिनेता शाहरूख खान, मुम्बई (3) फिल्म अभिनेता अमिताभ बच्चन, इलाहाबाद (4) फिल्म अभिनेत्री हेमा मालिनी, आगरा
6.	The world first electric plane named E-Fan first flight was carried successfully recently in:	6.	विश्व का पहला विद्युत हवाई जहाज जिसका नाम 'E-Fan' है, की पहली उड़ान अभी हाल ही में सफलता पूर्वक कहाँ संचालित हुई:
	(1) U.S.A. (2) U.K. (3) Germany (4) France		(1) यू.एस.ए. (2) यू.के. (3) जर्मनी (4) फ्रॉस
7.	Which one of the following plants yield bio diesel or bio fuels?	7.	निम्निलिखित में से कौन–सा पौधा बायोडीज़ल या बायो ईंघन पैदा करता है:
	(1) Hevea brasiliensis(2) Jatropha Curcas(3) Juniperus Verginiana(4) Parthenium orgenatum		(1) हीवीया ब्रैन्सीलिन्सीस(2) जैट्रोफा कैरकेस(3) जूनीपेरस वर्जीनियाना(4) पार्थेनियम अर्जेनाटम
8.	'The Argumentative Indian' is a book written by	8.	'द ऑर्ग्यूमेंटेटिव इंडियन' पुस्तक किसके द्वारा लिखी गई है?
	(1) Amartya Sen (2) Chetan Bhagat (3) Vikram Seth (4) Arundhati Roy		(1) अमर्त्य सेन(2) चेतन भगत(3) विक्रम सेठ(4) अरुंधित रॉय
9.	Nanda Devi Biosphere Reserve is located in which Indian state?	9.	नन्दा देवी जीव-मंडल रिजर्व भारत के किस राज्य में स्थित है: (1) अरुणाचल प्रदेश (2) असम
	(1) Arunachal Pradesh (2) Assam (3) Manipur (4) Uttarakhand		(3) मिणपुर (4) उत्तराखण्ड
10.	Which of the following is wrongly matched:	10.	निम्नलिखित में से कौन–सा गलत जोड़ा हैः
	 Hirakud - Mahanadi Pochampad - Godavari Nagarjun Sagar - Cauvery Bhakra Nagal - Sutlej 		(1) हीराकुड - महानदी(2) पोचम्पाद - गोदावरी(3) नागार्जुन सागर - कावेरी(4) भाखरा नांगल - सतलज

11.	Who has recently won 2014 Pultizer prize in the	11.	अभी हाल ही में कविता श्रेणी में 2014 पुलित्ज़र पुरस्कार किसने
	poetry category:		जीताः
	(1) Gobind Beharilal(2) Jhumpa Lahiri(3) Vijay Seshadri(4) Siddharath Mukherjee		(1) गोबिन्द बिहारीलाल (2) झुम्पा लहरी (3) विजय शेषाद्रि (4) सिद्धार्थ मुखर्जी
12.	Clean water would have BOD value of less than:	12.	स्वच्छ जल में BOD मान किससे कम होगाः
	(1) 5 ppm (2) 19 ppm (3) 25 ppm (4) 50 ppm		(1) 5 ppm (2) 19 ppm (3) 25 ppm (4) 50 ppm
13.	Identify the Shakespearean play in which we have a death by poisoning:	13.	शेक्सपीयर के उस नाटक को पहचानें जिसमें जहर के देने के कारण मृत्यु हुई थीः
	(1) As You Like It(2) Hamlet(3) The Merchant of Venice(4) None of these		(1) ऐज यू लाइक इट (2) हैमलेट (3) द मर्चेन्ट ऑफ वेनिस (4) इनमें से कोई नहीं
14.	Who will have its leader elected as leader of opposition and given the status & facilities to the rank of cabinet ministers?	14.	निम्नलिखित में से किसे विपक्ष का नेता चुना जाएगा एवं उसे कैंबिनेट मंत्री का दर्जा एवं सुविधाएं प्रदान की जायेंगी? (1) विपक्षी दल जिसमें सबसे ज्यादा संख्या में सांसद हैं
	(1) The opposition party with the largest number of MPs(2) The opposition party with the largest number of MPs and whose number is at least 1/10 of the total house		 (2) विपक्षी दल जिसमें सबसे ज्यादा संख्या में सांसद हैं एवं जिनकी संख्या सदन के कुल संख्या का कम से कम 1/10 है (3) विपक्षी दल जिसमें सबसे ज्यादा संख्या में सासंद हैं एवं
	(3) The opposition party with the largest number of MPs and whose number is at least 1/5 of the total house(4) None of the above is correct		जिनकी संख्या सदन के कुल संख्या का कम से कम 1/5 है (4) उपर्युक्त में कोई भी सही नहीं है
15.	Which one of the following is most likely to occur if the Reserve bank of India lowers the Cash Reserve Ratio?	15.	यदि भारतीय रिज़र्व बैंक नकद संचित अनुपात को कम करता है तो निम्नलिखित में से किसके घटित होने की संभावना है: (1) कुल बचत में वृद्धि
	 (1) An Increase in aggregate savings (2) A rise in Budget Deficit (3) A rise in aggregate money supply (4) A rise in the use of credit cards 		 (1) कुल बचत में वृद्धि (2) बजट घाटे में बढ़ोत्तरी (3) कुल मौद्रिक आपूर्ति में बढ़ोत्तरी (4) क्रेडिट कार्ड के प्रयोग में बढ़ोत्तरी
16.	The Reports of the comptroller and auditor General of India relating to the accounts of the Union shall be submitted to:	16.	परीक्षक की रिपोर्टे निम्न को प्रस्तुत की जाएंगी
	(1) The President of India		(1) भारत के राष्ट्रपति (2) भारत के प्रधानमंत्री
	(2) The Prime minister of India		(3) लोकसभा के अध्यक्ष
	(3) The Speaker of the Lok Sabha(4) The Finance Minister of India		(4) भारत के वित्त-मंत्री
17.	One star is going away from the Earth. Then the observer on the Earth will experience:	17.	कोई तारा पृथ्वी से दूर जा रहा है पृथ्वी पर बैठा निरीक्षक तारे से प्राप्त प्रकाश के सम्बंध में क्या अनुभव करेगाः
	(1) Decrease in wave length		(1) तरंग दैर्ध्य में कमी
	(2) Increase in wave length(3) No change in wave length		(2) तरंग दैर्ध्य में वृद्धि(3) तरंग दैर्ध्य में कोई परिवर्तन नहीं
	(4) None of these		(4) इनमें से कोई नहीं
18.	Which one of the following seismic wave is the fastest?	18.	निम्न में से कौन-सी भूकंपीय तरंग सबसे तेज है?
	(1) P Wave(2) S Wave(3) L Wave(4) R Wave		(1) P तरंग (2) S तरंग (3) L तरंग (4) R तरंग
19.	Who among the British Generals defeated Peshwa Baji Rao II:	19.	किस ब्रिटिश जनरल ने पेशवा बाजीराव द्वितीय को परास्त किया थाः
	(1) Autram(2) Malcom(3) Elphinstone(4) Kitchner		(1) औट्रम (2) मैलकम (3) एलफिनस्टोन (4) किचेनर

- 20. Which one is not written by Munshi Prem Chand:
 - (1) Rangbhoomi
- (2) Prem Pachisi
- (3) Vishkanya
- (4) Kayakalp
- 21. A B is a tangent to the circle. The radius of the circle is 2 cm. Then the area of the shaded portion is:

- (2) $\frac{\pi}{2} 2$
- (4) None of these
- 22. Two cylinders have the same volume. The heights are in the ratio of 1:2, then the ratio of the radii will be:
 - (1) 2:1
- (2) 1:2
- (3) 1: $\sqrt{2}$
- (4) $\sqrt{2}$: 1
- If the ath part of 49 is 7 and bth part of 63 is 9 and cth part of 112 is 16. Then which of the following is true:
 - (1) abc = $\frac{1}{7}$
- (2) $abc = a^3$
- (3) $abc = \frac{1}{49}$
- (4) None of these
- 24. x% of x is the same as 10% of:
 - (1) $\frac{x^2}{10}$

- (4) None of these
- 25. P Q R S T are five boys. Given that P is taller than Q, R is shorter than P, S is taller than T but shorter than Q, the tallest boy is:
 - (1) P

(2) Q

(3) R

- (4) None of these
- 26. Five persons are standing in a queue. One of the two persons at the extreme end is a professor and the other is a businessman. An advocate is standing to the right of the student. An author is to the left of the businessman. The student is standing between the professor and the advocate. Counting from the left the author is at which place:
 - (1) 1st
- (2) 2nd
- (3) 3rd
- (4) 4th
- 27. P is standing to the east of Q at a distance of 4 27. Km. P stands still while Q goes north for 4 Km. In which direction must Q now look to see P:
 - (1) East
- (2) South East
- (3) South
- (4) South West

- निम्नलिखित में से कौन मुंशी प्रेमचन्द द्वारा रचित नहीं है:
 - (1) रंगभूमि
- (2) प्रेम पचीसी
- (3) विषकन्या (4) कायाकल्प
- वृत्त पर एक स्पर्श रेखा 'A B' हैं। वृत्त की त्रिज्या 2 सेमी. है। तो छांयाकित भाग का क्षेत्रफल होगाः

- (4) इनमें से कोई नहीं
- दो सिलेन्डरों का आयतन समान है। उनके ऊँचाई का अनुपात 1:2 है तो उनके त्रिज्याओं का अनुपात होगाः
 - (1) 2:1
- (2) 1:2
- (3) 1: $\sqrt{2}$
- (4) $\sqrt{2}$: 1
- यदि 49 का aवाँ हिस्सा 7 है, 63 का bवाँ हिस्सा 9 है तथा 112 का cवाँ हिस्सा 16 है तो निम्न में से कौन सा सत्य है:
 - (1) abc = $\frac{1}{7}$
- (2) $abc = a^3$
- (3) $abc = \frac{1}{49}$
- (4) इनमें से कोई नहीं
- 24. x का x% वही होगा जो 10% होगाः
 - (1) $\frac{x^2}{10}$ 朝
- (2) x/10 का
- (3) $\frac{x^3}{10}$ का
- (4) इनमें से कोई नहीं
- PQRST पाँच लड़के हैं। 'P' 'Q' से लम्बा है। 'R' 'P' से छोटा है। 'S' 'T' से लम्बा लेकिन 'Q' से छोटा है तो सर्वाधिक लम्बा कौन है:
 - (1) P

(3) R

- (2) Q(4) इनमें से कोई नहीं
- पाँच व्यक्ति एक कतार में खड़े हैं। दो व्यक्तियों में एक अन्तिम छोर पर एक व्यक्ति एक प्रोफेसर तथा दूसरा एक व्यवसायी है। विद्यार्थी के दाहिने एक एडवोकेट खड़ा है। व्यवसायी के बाँए एक लेखक है। विद्यार्थी प्रोफेसर एवं एडवोकेट के मध्य में खड़ा है। बाँए से गिनते हुए लेखक किस स्थान पर है:
 - (1) प्रथम
- (2) द्वितीय
- (3) तृतीय
- (4) चतुर्थ
- 'Q' के पूर्व में 'P' 4 कि.मी. की दूरी पर खड़ा है। 'P' वहीं खड़ा है जबिक 'Q' 4 कि.मी. उत्तर की ओर चलता है। 'P' को देखने के लिए 'Q' को किस दिशा की ओर देखना चाहिए:
 - (1) पूर्व

- (2) दक्षिण पर्व
- (3) दक्षिण
- (4) दक्षिण पश्चिम

28.	If AM=3, ARE=4, and NEVI		28.	यदि AM=3, ARE=4, एवं NE "INDIA IS A GREAT NATI	
	(1) 32 (3) 28	(2) 29(4) None of these		(1) 32 (3) 28	(2) 29 (4) इनमें से कोई नहीं
DIR	ECTIONS: Complete the folio	owing series.	निर्देश	ाः निम्नलिखित श्रृंखला को पूरा करें	ì
29.	A Z B Z _ A B A _ A _ B _ I	ВА	29.	A Z B Z _ A B A _ A _ B _	ВА
	(1) AZBZ (3) BZZZ	(2) BZAZ (4) ZAZZ		(1) AZBZ (3) BZZZ	(2) B Z A Z (4) Z A Z Z
30.	If one side and one diagon and 8 cm respectively, the		30.	यदि चर्तुभुज की एक भुजा एवं ए है, तो उसका क्षेत्रफल (सेमी. ² मे	एक विकर्ण क्रमशः 5 एवं 8 सेमी. है) हैः
	(1) 22(3) 24	(2) 20(4) 25		(1) 22 (3) 24	(2) 20(4) 25
31.	One acute angle of a double the other. If the lea		31.	एक समकोण त्रिभुज का न्यूनको विकर्ण की लम्बाई 10 सेमी. है	ग दूसरे का दुगुना है। यदि इसके तो इसका क्षेत्रफल होगाः
	10 cm, then its area is:	2		(1) $\frac{75}{2}$ cm ²	(2) 25 cm ²
	(1) $\frac{75}{2}$ cm ²	(2) 25 cm ²		(3) $\frac{25}{2}\sqrt{3} \text{ cm}^2$	(4) इनमें से कोई नहीं
	(3) $\frac{25}{2}\sqrt{3} \text{ cm}^2$	(4) None of these		-	
32.	The average age of the bois 14.5 years. What will be new boys come whose average them?	be the average age if 10	32.	आयु क्या होगा यदि 10 नये लह जिनकी औसत आयु 15.2 वर्ष	
	joins them? (1) 15.5 years (3) 16.25 years	(2) 14.68 years(4) None of these		(1) 15.5 वर्ष (3) 16.25 वर्ष	(2) 14.68 वर्ष (4) इनमें से कोई नहीं
33.	In a certain code langu written as 'PORPRONOIT' written in that code langu	'. How is 'CONVERSION'	33.		TION' को 'PORPRONOIT' माषा में 'CONVERSION' को
	(1) VNOCERONIS(3) VNOCRENOIS	(2) VNCORENOIS(4) VNOCREIONS		(1) VNOCERONIS(3) VNOCRENOIS	(2) VNCORENOIS(4) VNOCREIONS
34.	Three men or eight boys of 17 days. How many day boys together take to finis	s will two men and six	34.	तीन व्यक्ति या आठ लड़के किर्स हैं। दो व्यक्ति एवं छः लड़के एक कितना दिन लेगें?	। कार्य को 17 दिन में कर सकते साथ उसी कार्य को पूरा करने में
	(1) 11 days (3) 12 days	(2) 17 days(4) None of these		(1) 11 दिन (3) 12 दिन	(2) 17 दिन (4) इनमें से कोई नहीं
35.	Twelve solid spheres of by melting a solid me diameter 2 cm and height	tallic cylinder of base	35.	ऊँचाई 16 सेमी. है, को गलाव गोले बनाए जाते हैं। प्रत्येक गोले	
	each sphere is:	(2) 2 om		(1) 2 就	(2) 3 सेमी.
	(1) 2 cm (3) 4 cm	(2) 3 cm (4) 6 cm		(3) 4 सेमी.	(4) 6 सेमी.
36.	There are some girls and total number of heads is legs is 46, then how ma buffalos are there?	15 and total number of	36.	15 एवं पैरों की कुल संख्या 46 भैंसें हैं?	भैसें हैं। यदि सिरों की कुल संख्या हो तो कितनी लड़कियाँ एवं कितनी
	(1) 8 girls and 7 buffalos(3) 7 girls and 8 buffalos			(1) 8 लड़िकयाँ एवं 7 भैसें(3) 7 लड़िकयाँ एवं 8 भैसें	

37.	Given two positions of the	e dice as being.	37.	पांसे की दो स्थितियाँ इस प्रकार	दी गई हैं।
	When 2 is at the bottom wh (1) 5 (3) 1	nich number is at the top: (2) 4 (4) 6		जब 2 तल में होगा तो कौन-सी (1) 5 (3) 1	संख्या शीर्ष पर होगीः (2) 4 (4) 6
38.	Simplify: $2^{65} \times 2^{70} - 2^{97} \times 2^{10}$	2 ³⁸	38.	सरल करें: $2^{65} \times 2^{70} - 2^{97}$	×2 ³⁸
	(1) 1 (3) -1	(2) 0(4) None of these		(1) 1 (3) –1	(2) 0 (4) इनमें से कोई नहीं
39.	The average of 5 consecutand E is 48. What is the pe		39.	5 क्रमिक संख्याओं A, B, C, I एवं D का गुणनफल क्या होगा?	D एवं E का औसत 48 है। A
	(1) 2300(3) 2208	(2) 2204(4) 2254		(1) 2300(3) 2208	(2) 2204(4) 2254
40.	Among five friends-Brijes Vinod each having a di heavier than only Jai. Brij and Vinod but not as hea	fferent weight. Feroz is esh is heavier than Feroj vy as Kamal. Who is the	40.	प्रत्येक का भार भिन्न है। फिरोज	
	third heaviest among ther(1) Kamal(3) Vinod	n ? (2) Brijesh (4) Data inadequate		(1) कमल (3) विनोद	(2) ब्रिजेश (4) अपर्याप्त आँकड़े
41.	Select the suitable alternative	ve to complete the series.	41.	निम्नलिखित प्रश्न में उस विकल्प व	हो चुने जो श्रेणी को पूर्ण करता है।
	2401 , 49 , 7 ; , 36 , 6 : (1) 1296 (3) 7776	(2) 216 (4) 1378		2401, 49, 7 ;, 36, 6 : (1) 1296 (3) 7776	(2) 216 (4) 1378
	ECTIONS: (Question No. 42 uage— i. 'Cod dex nom' stands for iii. 'Zip dex nux' stands for iii. 'Cod nux elp' stands for	or 'banana is sweet'	निर्देश	ाः (प्रश्न संख्या 42 एवं 43) एक f i. 'Cod dex nom' का तात्प ii. 'Zip dex nux' का तात्पर्य iii. 'Cod nux elp' का तात्पर्य iv. 'pa reb nom' का तात्पर्य	र्य है 'banana is sweet' है 'apple is good' है 'banana and apple' एवं
	iv. 'pa reb nom' stands for		42.	उस भाषा में कौन-सा शब्द 'app	ole' के लिये प्रयुक्त किया गया है:
42.	Which word in that langua (1) Elp (3) Zip	(2) Nux (4) None of these		(1) Elp (3) Zip	(2) Nux (4) इनमें से कोई नहीं
43.	What does 'Zip' stand for		43.	'Zip' किसके लिये प्रयुक्त किया	गया है?
	(1) Apple (3) Good	(2) And(4) None of these		(1) Apple (3) Good	(2) And (4) इनमें से कोई नहीं
44.	How many times from 4 / clock are at right angles?	AM to 4 PM the hands of	44.	4 प्रातः से 4 सायं के मध्य घड़ी होंगी?	की सुईं कितनी बार समकोण पर
	(1) 24(3) 22	(2) 20(4) 18		(1) 24 (3) 22	(2) 20(4) 18
45.	If in a certain code langu '+ ÷ & ×' and 'SKIP' is wri 'LIFE' written in that code	tten as '- @ √%'. How is	45.		LE' को '+ ÷ & ×' एवं 'SKIP' । 'LIFE' को उसी कोड में कैसे
	(1) @ + ÷ √ (3) × & % \$	(2) √% T & (4) @ & × +		(1) @ + ÷ √ (3) × & % \$	(2) √% T & (4) @ & × +

TECHNICAL APTITUDE

46.	Which one of the following statements is correct? Digital modulation techniques are used in satellite communication systems since: (1) They are easier to handle (2) Large bandwidth utilization is possible (3) They have a higher spectral efficiency (4) They are less prone to interference	46.	निम्न में से कौन-सा कथन सही है? उपग्रह संचार प्रणालियों में अंकीय माडुलन तकनीकों का प्रयोग किया जाता है क्योंकिः (1) उन्हें संभालना आसान होता है (2) विशाल बैंड चौड़ाई का प्रयोग संभव होता है (3) उनमें उच्चतर स्पेक्ट्रमी प्रभाविता होती है (4) उनमें व्यतिकरण की संभावना कम होती है
47.	How many bits are required to encode 32 level PCM:	47.	32 स्तरीय PCM के कोडन के लिए कितने बिटों की जरूरत होती है?
	(1) 6 (2) 5 (3) 4 (4) 3		(1) 6 (2) 5 (3) 4 (4) 3
48.	The noise is more dominant in which of the following: (1) PAM (2) PWM (3) PPM (4) FSK	48.	निम्न में से किसमें रव अधिक प्रबल होता है? (1) PAM (2) PWM (3) PPM (4) FSK
49.	The phase velocity of wave propagating in a hollow metal wave guide is: (1) Greater than the velocity of the light in free space (2) Less than the velocity of the light in free space (3) Equal to the velocity of the light in free space (4) Equal to the group velocity	49.	खोखले धातु तरंग पथक में संचरित तरंग का कला वेग होता है: (1) मुक्त अंतरिक्ष में प्रकाश के वेग से अधिक (2) मुक्त अंतरिक्ष में प्रकाश के वेग से कम (3) मुक्त अंतरिक्ष में प्रकाश के वेग के बराबर (4) समूह वेग के बराबर
50.	The magnitude of the open-circuit and short circuit input impedance of a transmission line are 100 ohm and 25 ohm respectively. The characteristic impedance of line is: (1) 25 ohm (2) 50 ohm (3) 75 ohm (4) 100 ohm	50.	एक संचरण लाइन के मुक्त-परिपथ और लघु परिपथ निवेश प्रतिबाधा का परिमाण क्रमशः 100 ohm तथा 25 ohm है। लाइन की अभिलक्षणिक प्रतिबाधा है: (1) 25 ohm (2) 50 ohm (3) 75 ohm (4) 100 ohm
51.	The line of sight communication requires transmit and receive antenna to face each other. If the transmit antenna is vertically polarized, for the best reception the receive antenna should be: (1) Horizontally polarized (2) Vertically polarized (3) At 45° with respect to the horizontal polarization (4) At 45° with respect to the vertical polarization	51.	दर्श संचार की लाइन के लिए संचरण और प्रापक ऐंटीना एक-दूसरे के आमने-सामने होने जरूरी हैं। यदि संचरण ऐंटीना ऊर्घ्वाघर रूप से ध्रुवीकृत हो जाता है तो सर्वोत्तम अभिग्रहण के लिए प्रापक ऐंटीना होना चाहिए: (1) क्षैतिज रूप से ध्रुवीकृत (2) ऊर्घ्वाघर रूप से ध्रुवीकृत (3) क्षैतिज ध्रुवीकरण के प्रति 45° पर (4) ऊर्घ्वाघर ध्रुवीकरण के प्रति 45° पर
52.	A network contains linear resistance and ideal voltage source. If the value of all the resistors are doubled, then the voltage across each resistor is: (1) Halved (2) Doubled (3) Increased by four times (4) Not changed	52.	एक नेटवर्क में रैखिक प्रतिरोध और आदर्श वोल्टता स्नोत है। यदि सभी प्रतिरोधकों का मान दुगुना कर दिया जाए तो प्रत्येक प्रतिरोधक के आरपार वोल्टताः (1) आधी हो जाती है (2) दुगुनी हो जाती है (3) चार गुना बढ़ जाती है (4) कोई परिवर्तन नहीं होता
53.	Twelve 1 ohm resistances are used as edge to form a cube. The resistance between two diagonally opposite corners of the cube is: (1) 5/6 ohm (2) 1 ohm (3) 6/5 ohm (4) 3/2 ohm	53.	एक घन बनाने के लिए कोर के रूप में बारह 1 ohm प्रतिरोधकों का प्रयोग किया जाता है। घन के दो विकर्णतः प्रतिकूल किनारों के बीच प्रतिरोध है: (1) 5/6 ohm (2) 1 ohm (3) 6/5 ohm (4) 3/2 ohm
54.	An eight bit digital data 10101100 is fed to an ADC. The reference voltage is +10V. The analog output voltage will be: (1) 1.05V (2) 6.74V (3) 10.10V (4) 5.15V	54.	एक आठ बिट अंकीय डाटा 10101100 एक ADC में संभरित किया जाता है। निर्देश वोल्टता +10V है। अनुरूप निर्गम वोल्टता होगी: (1) 1.05V (2) 6.74V (3) 10.10V (4) 5.15V

55.	A series RLC circuit has a KHz and a quality factor C and C is doubled from its Q of the circuit is:	Q = 100. If each of the R,L	55.	एक श्रेणी RLC परिपथ की उ गुणता कारक Q = 100 है। यदि उसके मूल मान से दुगुना कर दि Q है:	R, L तथा C में से प्रत्येक को
	(1) 25 (3) 100	(2) 50(4) 200		(1) 25 (3) 100	(2) 50(4) 200
56.	The input to a coherent diplus noise. The noise at the second of the in-phase componed (2) The quadrature-composition (3) Zero (4) The envelope	ne detector output is:		संसक्त संसूचक का इन्पुट है DS निर्गम पर रव है: (1) अंतःकला घटक (2) क्वाडरेचर-घटक (3) शून्य (4) अन्वालोप	B-SC संकेत जमा रव। संसूचक
57.	Gunn diode is a: (1) Negative resistance de (2) Positive resistance dev (3) High noise device (4) Low frequency device		57.	 गन डायोड होता है एकः (1) ऋणात्मक प्रतिरोध उपकरण (2) धनात्मक प्रतिरोध उपकरण (3) उच्च रव उपकरण (4) न्यून आवृत्ति उपकरण 	
58.	The intrinsic carrier cosample at 300° K is 2.55 the number of majority cominority carrier density is $(1) 1.25 \times 10^{12}/\text{m}^3$ $(3) 2.5 \times 10^{20}/\text{m}^3$	×10 ¹⁶ /m ³ . If after doping, arriers is 5×10 ²⁰ /m ³ , the	58.	300° K पर सिलीकॉन प्रदर्श 2.5×10 ¹⁶ /m³ है। यदि मादन संख्या 5×10 ²⁰ /m³ है तो अल्पर (1) 1.25×10 ²⁰ /m³ (3) 2.5×10 ²⁰ /m³	के बाद बहुसंख्यक वाहकों की
59.	The unit of ∇× H is: (1) Ampere (3) Ampere/meter ²	(2) Ampere/meter(4) Ampere-meter	59.	∇ × H की इकाई है: (1) ऐम्पीयर (3) ऐम्पीयर ∕मीटर²	(2) ऐम्पीयर/मीटर (4) ऐम्पीयर-मीटर
60.	A PIN diode is: (1) A metal semiconductor (2) A microwave mixer dio (3) Often used as a microv (4) Suitable for use as a m	de vave detector	60.	PIN डायोड होता है: (1) एक धातु अर्द्धचालक बिंदु-सं (2) एक सूक्ष्मतरंग योजक डायोड (3) अक्सर एक सूक्ष्मतरंग संसूच (4) एक सूक्ष्मतरंग के रूप में प्रय	क के रूप में प्रयुक्त
61.	11001, 1001 and 111001 complement representati following sets of number (1) 25, 9 and 57 respective (2) -6, -6 and -6 respective (3) -7, -7 and -7 respective (4) -25, -9 and -57 respective (5)	on of which one of the ? ely vely vely	61.	11001, 1001 तथा 111001 स् सेट के 2's पूरक निरूपण के अन् (1) क्रमशः 25, 9 तथा 57 (2) क्रमशः -6, -6 तथा -6 (3) क्रमशः -7, -7 तथा -7 (4) क्रमशः -25, -9 तथा -57	
62.	To couple a coaxial line to best to use a: (1) A slotted line (2) Balun (3) Directional coupler (4) Quarter wave line trans		62.	एक समाक्ष लाइन को एक समान करने के लिए निम्न का प्रयोग क (1) खांचेदार लाइन (2) बैलून (3) निदेशात्मक युग्मक (4) क्वार्टर तरंग लाइन ट्रांसफार्म	रना सर्वोत्तम हैः
63.	Which of the following is lowest power consumption (1) CMOS (3) PMOS	_	63.	जहां न्यूनतम ऊर्जा खपत जरूरी व्यापक रूप से प्रयोग किया जाता (1) CMOS (3) PMOS	

- 64. Reflex klystron is a:
 - (1) Low power generator
- (2) High power oscillator
- (3) Low gain amplifier
- (4) Not an oscillator
- 65. If the radiated power of AM transmitter is 10 KW, the power in the carrier for modulation index of 0.6 is nearly:
 - (1) 8.24 KW
- (2) 9.26 KW
- (3) 8.47 KW
- (4) 9.6 KW
- 66. The current through 8 ohms branch is:

- (3) 1.5A
- (4) None of these
- 67. JFET in properly biased condition acts as a:
 - (1) Current controlled current source
 - (2) Voltage controlled voltage source
 - (3) Voltage controlled current source
 - (4) Impedance controlled current source
- 68. The circuit shown in figure is best described as a:

- (1) Bridge rectifier
- (2) Ring modulator
- (3) Frequency discriminatory
- (4) Voltage doubler
- 69. Which amplifier will be preferred for highest gain?
 - (1) Darlington pair
 - (2) Cascade amplifier
 - (3) Cascode amplifier
 - (4) Depends on the circuitry
- 70. The Boolean expression for the truth table shown is:

Α	В	C	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

- (1) $B(A+C)(\overline{A}+\overline{C})$
- (2) $B(A + \overline{C})(\overline{A} + C)$
- (3) $\overline{B}(A + \overline{C})(\overline{A} + C)$
- (4) $\overline{B}(A+C)(\overline{A}+\overline{C})$

- 64. रिफ्लेक्स क्लिस्ट्रोन होता है एकः
 - (1) कम शक्ति का जेनरेटर
- (2) उच्च शक्ति का दोलित्र
- (3) न्यून लब्धि ऐम्प्लीफायर (4) एक दोलित्र नहीं
- यदि AM ट्रांसमीटर की विकरित विद्युत 10 KW है तो 0.6 के माडुलन सूचकांक के लिए वाहक में विद्युत है लगभगः
 - (1) 8.24 KW
- (2) 9.26 KW
- (3) 8.47 KW
- (4) 9.6 KW
- 8 ohms शाखा के माध्यम से धारा है:

- 67. समुचित रूप से बायसित स्थिति में JFET निम्न रूप में काम करता हैः
 - (1) धारा नियंत्रित धारा स्रोत
 - (2) वोल्टता नियंत्रित वोल्टता स्रोत
 - (3) वोल्टता नियंत्रित धारा स्रोत
 - (4) प्रतिबाधा नियंत्रित धारा स्रोत
- नीचे दर्शाया गया परिपथ निम्न रूप में सर्वोत्तम रूप से परिभाषित किया जाता है:

- (1) सेतु दिष्टकारी
- (2) सेतु माडुलक
- (3) आवृत्ति विभेदक
- (4) वोल्टता द्विगुणक
- सर्वोत्तम लब्धि के लिए कौन-से ऐम्प्लीफायर को वरीयता दी जाएगी?
 - (1) डार्लिंग्टन युग्म
 - (2) सोपानी ऐम्प्लीफायर
 - (3) कैस्कोड ऐम्प्लीफायर
 - (4) परिपथिकी पर निर्भर करता है
- दर्शाई गई सत्यमान सारणी के लिए बूलीय अभिव्यक्ति है:

Α	В	C	f
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

- (1) $B(A+C)(\overline{A}+\overline{C})$
- (2) $B(A + \overline{C})(\overline{A} + C)$
- (3) $\overline{B}(A + \overline{C})(\overline{A} + C)$
- (4) $\overline{B}(A+C)(\overline{A}+\overline{C})$

71.	Without any additional circuitry, an 8:1 MUX can be used to obtain:	71.	किसी अतिरिक्त परिपथिकी के बिना, 8:1 MUX का प्रयोग निम्न प्राप्त करने के लिए किया जा सकता है:
	 Some but not all Boolean functions of 3 variables All function of 3 variables but none of 4 variables All functions of 3 variables and some but not all of 4 variables 		 (1) 3 चरों के कुछ किंतु सभी बूलीय फलन नहीं (2) 3 चरों के सभी फलन लेकिन 4 चरों का कोई नहीं (3) 3 चरों के सभी फलन और 4 चरों के कुछ किंतु सभी नहीं (4) 4 चरों के सभी फलन
	(4) All functions of 4 variables		
72.	The resolution of a potentiometer should be:	72.	विभवमापी का वियोजन होना चाहिएः
	(1) Zero (2) Low		(1) शून्य (2) न्यून
	(3) High (4) Infinite		(3) उच्च (4) अनंत
73.	Negative feedback in amplifier:	73.	ऐम्प्लीफायर में ऋणात्मक पुनर्भरणः
	(1) Improves the SNR at input		(1) निवेश पर SNR में सुधार लाता है
	(2) Improve SNR at output		(2) निर्गम पर SNR में सुधार लाता है (3) विरूपण कम करता है
	(3) Reduces distortion(4) Decreases bandwidth		(3) विरुप्त कर्म करता है (4) बैंड चौड़ाई घटाता है
74		74	स्पेक्ट्रमी घनत्व व्यक्त करता हैः
74.	Spectral density expresses: (1) Average voltage		(1) औसत वोल्टता
	(2) Average current		(2) औसत धारा
	(3) Average power in a waveform as a function of		(3) आवृत्ति के एक फलन के रूप में तरंग रूप में औसत विद्युत
	frequency (4) None of these		(4) इनमें से कोई नहीं
75		75	निम्न में से किसका प्रयोग डाटा वरित्र के रूप में किया जाता है?
75.	Which of the following is used as a data selector? (1) Encoder (2) Decoder	75.	(1) कोडित्र (2) विकोडक
	(3) Multiplexer (4) De-multiplexer		(3) बहुसंकेतक (4) द्वि-बहुसंकेतक
76.	If a signal x(n)=x(-n), then it is called signal:	76.	यदि कोई संकेत x(n)=x(-n) है तो यह संकेत कहलाता है:
	(1) Odd (2) Energy		(1) विषम (2) ऊर्जा
	(3) Power (4) Even		(3) विद्युत (4) सम
77.	The response of an LTI/LSI system is given by the of input and impulse response:	77.	LTI/LSI प्रणाली की अनुक्रिया निवेश के तथा आवेग अनुक्रिया से प्राप्त होती हैः
	(1) Convolution (2) Correlation		(1) संवलन (2) सहसंबंध
	(3) Superposition (4) None		(3) अध्यारोपण (4) कोई नहीं
78.	Companders are used in communication systems to:	78.	संचार प्रणालियों में कंपैण्डरों का प्रयोग निम्न के लिए किया जाता है:
	(1) Compress bandwidth		(1) बैंड की चौड़ाई संपीड़ित करना
	(2) To improve frequency response(3) To improve signal to noise ratio		(2) आवृत्ति अनुक्रिया में सुधार लाना(3) संकेत रव अनुपात में सुधार लाना
	(4) None of these		(4) इनमें से कोई नहीं
79.	I _{CB0} in a transistor can be reduced by reducing:	79.	ट्रांजिस्टर में I _{CB0} को निम्न घटाकर कम किया जा सकता है:
	(1) IB (2) VCC		(1) IB (2) VCC
	(3) IE (4) Temperature		(3) IE (4) तापमान
80.	Light is confined within the core of a simple optical fiber by:	80.	प्रकाश निम्न द्वारा एक सरल प्रकाशीय फाइबर की कोर के भीतर सीमित रहता है:
	(1) Refraction.		(1) अपवर्तन द्वारा
	(2) Total internal reflection at the outer edge of the		(2) परिनिधान के बाहरी किनारे पर कुल आंतरिक परावर्तन(3) कोर परिनिधान सीमा पर कुल आंतरिक परावर्तन
	cladding. (3) Total internal reflection at the core cladding		(4) फाइबर की प्लास्टिक कोटिंग से रिफ्लेक्शन
	houndary		

(4) Reflection from the fiber's plastic coating.

81.	The complement of AB+BC	'+CD' is:	81.	AB+BC'+CD' का पूरक है:	
	(1) A'CD+B'C'+B'D	(2) A'C'+BC+AB'D' (4) A'C'+B'C'+A'B'D'		-,	(2) A'C'+BC+AB'D'(4) A'C'+B'C'+A'B'D'
82.	The following expression become XY(X'YZ +X'Y'Z'+X		82.	निम्न अभिव्यक्ति XY(X'YZ +) जाने पर बन जाएगीः	X'Y'Z'+XY'Z) सरलीकृत किए
	` ,	(2) 1 (4) X		(1) 0 (3) -1	(2) 1 (4) X
83.	In a PCM system of teler noise depends on:	metry, the quantization	83.	दूरिमिति की PCM प्रणाली में करता है:	वांटमीकरण रव निम्न पर निर्भर
	 The sampling rate and q The sampling rate only The number of quantizat Information provided is n 	ion level		 (1) प्रतिचयन दर तथा क्वांटमीकः (2) केवल प्रतिचयन दर (3) क्वांटमीकरण स्तर की संख्या (4) उपलब्ध कराई गई जानकारी 	
84.	In PCM system, if we inclevels from 2 to 8, th		84.	PCM प्रणाली में यदि हम क्वांटमी दें, तो सापेक्ष बैंड की चौड़ाई की	
		(2) Remain same (4) Becomes eight times		(1) दुगुनी हो जाएगी(3) तिगुनी हो जाएगी	(2) पूर्ववत रहेगी (4) 8 गुना हो जाएगी
85.	The modulation system resistant is:	inherently most noise	85.	ऐसी माडुलन प्रणाली जो अंतर्निष्ठ है:	रूप से सर्वाधिक रव विरोधी है,
	 Frequency modulation Pulse width modulation Pulse code modulation Phase modulation 			(1) आवृत्ति माडुलन(2) स्पंद कालाविध माडुलन(3) स्पंद कोड माडुलन(4) कला माडुलन	
86.	Which of the following require polarizing current?	microphone does not	86.	निम्न में से कौन से माइक्रोफोन व होती?	ने ध्रुवकारी धारा की जरूरत नहीं
86.		microphone does not	86.		न्ने घ्रुवकारी धारा की जरूरत नहीं
	require polarizing current?(1) Crystal microphone(2) Condenser microphone(3) Carbon microphone			होती? (1) क्रिस्टल माइक्रोफोन (2) संग्राही माइक्रोफोन (3) कार्बन माइक्रोफोन	
	require polarizing current? (1) Crystal microphone (2) Condenser microphone (3) Carbon microphone (4) All of the above The large signal bandwidth by its: (1) Loop gain			होती? (1) क्रिस्टल माइक्रोफोन (2) संग्राही माइक्रोफोन (3) कार्बन माइक्रोफोन (4) उपर्युक्त सभी OPmap की विशाल संकेत बैंड	
	require polarizing current? (1) Crystal microphone (2) Condenser microphone (3) Carbon microphone (4) All of the above The large signal bandwidth by its: (1) Loop gain	a of an opamp is limited (2) Slew rate (4) Input frequency op made of NOR gates,	87.	होती? (1) क्रिस्टल माइक्रोफोन (2) संग्राही माइक्रोफोन (3) कार्बन माइक्रोफोन (4) उपर्युक्त सभी OPmap की विशाल संकेत बैंड सीमित होती है: (1) पाश लिब्ध	की चौड़ाई इसकी निम्न द्वारा (2) द्रुत घूर्णन गति (4) निवेश आवृत्ति
87.	require polarizing current? (1) Crystal microphone (2) Condenser microphone (3) Carbon microphone (4) All of the above The large signal bandwidth by its: (1) Loop gain (3) Output impedance In an unclocked R-S flip flotthe forbidden input condition (1) R=0, S=0	a of an opamp is limited (2) Slew rate (4) Input frequency op made of NOR gates,	87.	होती? (1) क्रिस्टल माइक्रोफोन (2) संग्राही माइक्रोफोन (3) कार्बन माइक्रोफोन (4) उपर्युक्त सभी OPmap की विशाल संकेत बैंड सीमित होती है: (1) पाश लिब्ध (3) निर्गम प्रतिबाधा NOR द्वारों से निर्मित वितालकि	की चौड़ाई इसकी निम्न द्वारा (2) द्रुत घूर्णन गति (4) निवेश आवृत्ति
87. 88.	require polarizing current? (1) Crystal microphone (2) Condenser microphone (3) Carbon microphone (4) All of the above The large signal bandwidth by its: (1) Loop gain (3) Output impedance In an unclocked R-S flip flotthe forbidden input condition (1) R=0, S=0	(2) Slew rate (4) Input frequency op made of NOR gates, on is: (2) R=1, S=0 (4) R=1, S=1	87.	होती? (1) क्रिस्टल माइक्रोफोन (2) संग्राही माइक्रोफोन (3) कार्बन माइक्रोफोन (4) उपर्युक्त सभी OPmap की विशाल संकेत बैंड सीमित होती है: (1) पाश लब्धि (3) निर्गम प्रतिबाधा NOR द्वारों से निर्मित वितालकि आवेश शर्त है: (1) R=0, S=0	(2) द्रुत घूर्णन गति (4) निवेश आवृत्ति (7) त. R-S फिलपफ्लाप में, निषिद्ध (2) R=1, S=0 (4) R=1, S=1
87. 88.	require polarizing current? (1) Crystal microphone (2) Condenser microphone (3) Carbon microphone (4) All of the above The large signal bandwidth by its: (1) Loop gain (3) Output impedance (4) In an unclocked R-S flip flot the forbidden input condition (1) R=0, S=0 (2) R=0, S=1 (3) R=0, S=1 (4) A phase-locked loop (PLL consisting of a: (1) Phase detector.	(2) Slew rate (4) Input frequency op made of NOR gates, on is: (2) R=1, S=0 (4) R=1, S=1	87.	होती? (1) क्रिस्टल माइक्रोफोन (2) संग्राही माइक्रोफोन (3) कार्बन माइक्रोफोन (4) उपर्युक्त सभी OPmap की विशाल संकेत बैंड सीमित होती है: (1) पाश लब्धि (3) निर्गम प्रतिबाधा NOR द्वारों से निर्मित वितालकि आवेश शर्त है: (1) R=0, S=0 (3) R=0, S=1 एक कला-अभिबंधित पाश (पीएलप	(2) द्रुत घूर्णन गति (4) निवेश आवृत्ति (7) त. R-S फिलपफ्लाप में, निषिद्ध (2) R=1, S=0 (4) R=1, S=1
87. 88.	require polarizing current? (1) Crystal microphone (2) Condenser microphone (3) Carbon microphone (4) All of the above The large signal bandwidth by its: (1) Loop gain (3) Output impedance (1) R=0, S=0 (3) R=0, S=1 (2) R=0, S=1 (3) Phase detector.	a of an opamp is limited (2) Slew rate (4) Input frequency op made of NOR gates, on is: (2) R=1, S=0 (4) R=1, S=1 2) is a feedback circuit (2) Low-pass filter. (4) All of these a fourteen-pin DIP that	87.	होती? (1) क्रिस्टल माइक्रोफोन (2) संग्राही माइक्रोफोन (3) कार्बन माइक्रोफोन (4) उपर्युक्त सभी OPmap की विशाल संकेत बैंड सीमित होती है: (1) पाश लिंड्य (3) निर्गम प्रतिबाधा NOR द्वारों से निर्मित वितालिक आवेश शर्त है: (1) R=0, S=0 (3) R=0, S=1 एक कला-अभिबंधित पाश (पीएलप परिपथ है: (1) कला संसूचक	(2) द्रुत घूर्णन गति (4) निवेश आवृत्ति त R-S फिलपफ्लाप में, निषिद्ध (2) R=1, S=0 (4) R=1, S=1 रल) निम्न से युक्त एक पुनर्भरण (2) निम्न आवृत्ति फिल्टर (4) इनमें से सभी

91.	Filters with the characteristic are useful when a rapid roll-off is required because it provides a roll-off rate greater than -20/dB/decade/pole: (1) Butterworth (2) Chebyshev (3) Bessel (4) Elliptical	91.	अभिलक्षण से युक्त फिल्टर उस समय उपयोगी होते हैं जब त्वरित रोल-आफ की जरूरत होती है क्योंकि यह -20/dB/decade/pole से उच्चतर रोल-आफ दर प्रदान करते हैं: (1) बट्टरवर्थ (2) शैविशेव (3) बेसल (4) दीर्घवृत्तीय
92.	Which of the following applications include a phase-locked loop (PLL) circuit? (1) Modems (2) AM decoders (3) Tracking filters (4) All of these	92.	निम्न अनुप्रयोगों में से किसमें एक कला-अभिबंधित पाश (पीएलएल) परिपथ शामिल है? (1) मोडेम (2) एएम विकोडक (3) अनुवर्तक फिल्टर (4) ये सभी
93.	Rectification efficiency of a fullwave rectifier without filter is nearly equals to:	93.	फिल्टर के बिना पूर्ण तरंग दिष्टकारी की दिष्टकरण प्रभाविता लगभग निम्न के बराबर होती है:
	(1) 51% (2) 61% (3) 71% (4) 81%		(1) 51% (2) 61% (3) 71% (4) 81%
94.	What is the voltage resolution of an 8-stage ladder network? (1) V _{ref} /128	94.	8-स्तरीय लैंडर नेटवर्क का वोल्टता वियोजन क्या है? (1) V _{ref} /128 (2) V _{ref} /256 (3) V _{ref} /512 (4) V _{ref} /1024
95.	In which region is the operating point stable in tunnel diodes? (1) Negative-resistance (2) Positive-resistance (3) Both negative- and positive-resistance (4) Neither negative- nor positive-resistance	95.	टनल डायोडों में कौन-से क्षेत्र में प्रचालन बिंदु स्थिर होता है? (1) ऋणात्मक प्रतिरोध (2) धनात्मक प्रतिरोध (3) ऋणात्मक तथा धनात्मक प्रतिरोध – दोनों (4) न ऋणात्मक न धनात्मक प्रतिरोध
96.	Which of the following diodes is limited to the	96.	
	reverse-bias region in its region of operation? (1) Schottky (2) Tunnel		पश्चिदिशिक बायस क्षेत्र तक सीमित रहता है? (1) शाटकी (2) टनल
97.		97.	(1) शाटकी (2) टनल (3) फोटोडायोड (4) दिष्टकारी
	 (1) Schottky (2) Tunnel (3) Photodiode (4) Rectifier Which of the following semiconductor materials is (are) used for manufacturing solar cells? (1) Gallium arsenide (2) Indium arsenide 		(1) शाटकी (2) टनल (3) फोटोडायोड (4) दिष्टकारी सौर सेलों का विनिर्माण करने के लिए निम्न में से कौन-सी अर्द्धचालक सामग्रियों का प्रयोग किया जाता है? (1) गैलियम आर्सेनाइड (2) इंडियम आर्सेनाइड
	(1) Schottky (2) Tunnel (3) Photodiode (4) Rectifier Which of the following semiconductor materials is (are) used for manufacturing solar cells? (1) Gallium arsenide (2) Indium arsenide (3) Cadmium sulfide (4) All of these If $Y(S) = \frac{s^2 + 1}{s}$, the network has: (1) 1 H inductor and 1 F capacitor in parallel (2) 1 H inductor and 1 F capacitor in series (3) 1 H inductor and 1 Ω resistor in series		(1) शाटकी (2) टनल (3) फोटोडायोड (4) दिष्टकारी सौर सेलों का विनिर्माण करने के लिए निम्न में से कौन-सी अर्द्धचालक सामग्रियों का प्रयोग किया जाता है? (1) गैलियम आर्सेनाइड (2) इंडियम आर्सेनाइड (3) कैडिमियम सल्फाई (4) ये सभी यदि $Y(S) = \frac{s^2 + 1}{s}$ है तो नेटवर्क में है: (1) 1 H प्रेरक और 1 F संधारित्र समानांतर में (2) 1 H प्रेरक और 1 F संधारित्र श्रेणी में (3) 1 H प्रेरक और 1 Ω प्रतिरोधक श्रेणी में (4) 1 H प्रेरक और 1 Ω प्रतिरोधक समानांतर में

101. A step voltage E is applied to a series R-L circuit. The rate of change of current is maximum at t =:

- (1) Zero
- (2) Infinity
- (3) L/R

(4) R/L

102. PLAs, CPLDs, and FPGAs are all which type of device?

- (1) SLD
- (2) PLD
- (3) EPROM
- (4) SRAM

103. Holding current for an SCR is best described as:

- (1) The minimum current required for turn-off
- (2) The current required before an SCR will turn on
- (3) The amount of current required to maintain conduction
- (4) The gate current required to maintain conduction

104. What type of temperature coefficient thermistors have?

(1) Positive

- (2) Negative
- (3) Either positive or negative (4) None of these

105. In a microprocessor:

- (1) One machine cycle is equal to one clock cycle
- (2) One clock cycle consists of several machine cycles
- (3) One machine cycle consists of several clock cycles
- (4) One machine cycle is always less than one clock cycle

106. In 8085 microprocessor with memory mapped I/O which of the following is true?

- (1) I/O devices have 16 bit addresses
- (2) I/O devices are accessed during IN and OUT
- (3) There can be a maximum of 256 input and 256 output devices
- (4) Logic operations can not be performed

107. A blank EPROM has:

- (1) All bits set to logical 0
- (2) All bits set to logical 1
- (3) Half the total number of bits set to 0 and remaining half to logical 1
- (4) Either (1) or (2)

108. One application of a digital multiplexer is to facilitate:

- (1) Code conversion
- (2) Parity checking
- (3) Parallel-to-serial data conversion
- (4) Data generation

109. The coefficient of coupling between two coils is 0.45. The first coil has an inductance of 75 mH and the second coil has an inductance of 105 mH. What is the mutual inductance between the coils?

- (1) 3.54 mH
- (2) 7.88 mH
- (3) 39.9 mH
- (4) 189.3 mH

101. एक श्रेणी R-L परिपथ पर एक सोपान वोल्टता E का अनुप्रयोग किया जाता है। धारा के परिवर्तन की दर t = _ पर अधिकतम है:

(1) श्रून्य

(2) अनंत

(3) L/R

(4) R/L

102. PLAs, CPLDs, तथा FPGA - सभी किस कोटि के उपकरण हैं?

- (1) SLD
- (2) PLD
- (3) EPROM
- (4) SRAM

103. SCR के लिए धारा धारित करने का सर्वोत्तम रूप से वर्णन निम्नानुसार हैः

- (1) बंद करने के लिए अपेक्षित न्यूनतम धारा
- (2) SCR को चालू किए जाने से पूर्व अपेक्षित धारा
- (3) चालन बनाए रखने के लिए अपेक्षित धारा की मात्रा
- (4) चालन बनाए रखने के लिए अपेक्षित द्वार धारा

104. ऊष्म प्रतिरोधियों में किस प्रकार का ताप गुणांक होता है?

- (1) धनात्मक
- (3) धनात्मक अथवा ऋणात्मक
- (4) इनमें से कोई नहीं

105. माइक्रोप्रोसेसर मेंः

- (1) एक यंत्र चक्र एक कालद चक्र के समतुल्य होता है
- (2) एक कालद चक्र में अनेक यंत्र चक्र होते हैं
- (3) एक यंत्र चक्र में अनेक कालद चक्र होते हैं
- (4) एक यंत्र चक्र सदैव एक कालद चक्र से कम होता है

106. स्मृति प्रतिचित्रित ।/O से युक्त 8085 माइक्रोप्रोसेसर में निम्न में से कौन सही है?

- (1) I/O उपकरणों में 16 बिट पते होते हैं
- (2) I/O उपकरणों तक IN तथा OUT अनुदेशों के दौरान पहुंचा
- (3) अधिक से अधिक 256 निवेश और 256 निर्गम उपकरण हो सकते हैं
- (4) तर्क प्रचालन निष्पादित नहीं किए जा सकते

107. एक रिक्त EPROM में होते हैं:

- (1) तर्कसंगत 0 के प्रति निर्देशित सभी बिट
- (2) तर्कसंगत 1 के प्रति निर्देशित सभी बिट
- (3) कुल बिटों में से आधे 0 के प्रति तथा शेष आधे तर्कसंगत 1 के प्रति
- (4) (1) अथवा (2)

108. अंकीय बहुसंकेतक का एक अनुप्रयोग निम्न को सुविधापूर्ण बनाना

- (1) कोड रूपांतरण
- (2) समता जांच
- (3) युगपत अनुक्रमी रूपांतरित्र
- (4) डाटा जनन

109. दो कायलों के बीच युग्मन का गुणांक 0.45 है। पहले कायल का प्रेरकत्व 75 mH है और दूसरे कायल का प्रेरकत्व 105 mH है। कायलों के बीच पारस्परिक प्रेरकत्व कितना है?

- (1) 3.54 mH
- (2) 7.88 mH
- (3) 39.9 mH
- (4) 189.3 mH

110. The fast carry or look-ahead carry circuits found in most 4-bit parallel-adder circuits: (1) Increase ripple delay (2) Add a 1 to complemented inputs (3) Reduce propagation delay (4) Determine sign and magnitude (11) Suffain विलंब बढ़ा देते हैं (2) पूरित निवेशों में 1 जोड़ देते हैं (3) संचरण विलंब घटा देते हैं (4) Determine sign and magnitude (11) Once (2) Twice (3) Thrice (4) Four times (1) Once (2) Twice (3) Thrice (4) Four times (1) 10 (3) 50 (4) 20 (3) 50 (4) 20 (3) 50 (4) 20 (1) 10 (3) 50 (4) 20 (1) 10 (3) 50 (4) 20 (1) 10 (3) 50 (4) 20 (1) 10 (3) 50 (4) 20 (1) 10 (3) 50 (4) 20 (1) 10 (3) 50 (4) 20 (1) 10 (3) 50 (4) 20 (3) 50 (4) 20 (3) 50 (4) 20 (4) A-bit R/2R digital-to-analog (DAC) converter has a reference of 5 volts. What is the analog output for the input code 1010: (1) 0.3125 V (3) 0.78125 V (4) -3.125 V (3) 0.78125 V (4) -3.125 V (5) Capacitance (6) L and C in parallel (1) Inductance (7) Inductance (8) Return ladies at 4-Ret Hyridint - Retard in Return ladies at 10. A part of Return ladies				110 अधिकांण 4 किन समानांत्र	्रांक्चक परिपर्शों में प्राप्त जाने वाने
(1) Increase ripple delay (2) Add a 1 to complemented inputs (3) Reduce propagation delay (4) Determine sign and magnitude (5) Twice (7) Once (8) Twice (9) Twice (10) Once (11) Once (12) Twice (13) Thrice (14) Four times (15) Once (15) Once (16) Once (17) Once (18) Twice (19) Once (20) Twice (30) Thrice (40) Four times (41) Four times (42) Twice (43) Thrice (44) Four times (45) Twice (46) Four times (47) Twice (48) Four times (49) Twice (49) Twice (40) Twice (40) Twice (41) Twice (42) Twice (43) Thrice (44) Four times (45) Twice (46) Four times (47) Twice (48) Twice (49) Twice (49) Twice (49) Twice (40) Twice (40) Twice (41) Twice (41) Twice (42) Twice (43) Thrice (44) Four times (45) Twice (46) Twice (47) Twice (48) Twice (49) Twice (40) Twice (49) Twice (40) Twice (40) Twice (40) Twice (41) Twice (40) Twice (41) Twice (42) Twice (43) Twice (44) Twice (44) Twice (44) Twice (45) Twice (46) Twice (47) Twice (48) Twice (48) Twice (48) Twice (49) Twice (40	110.	-			
2			or on outto.	9	
(4) Determine sign and magnitude (4) चिह्न और परिमाण निर्धारित करते हैं 111. To multiply a number by 8 in 8085 we have to use RAL instruction: (1) Once (2) Twice (3) Thrice (4) Four times (1) एक बार (2) दो बार (3) तीन बार (4) चार बार (4) चार बार (4) चार वार (5) तीन बार (4) चार वार (4) चार वार (4) चार वार (5) तीन बार (6) चार वार (6) चार वार (6) चार वार (6) चार वार (7) वार		· ·	ted inputs		
111. To multiply a number by 8 in 8085 we have to use RAL instruction: (1) Once (2) Twice (3) Thrice (4) Four times (3) तीन बार (2) दो बार (3) तीन बार (4) चार बार 112. An energy signal has G(f) = 10. Its energy density spectrum is: (1) 10 (2) 100 (3) 50 (4) 20 (1) 100 (3) 50 (4) 20 (1) 100 (3) 50 (4) 20 (1) 100 (3) 50 (4) 20 (1) 13. Feedback factor at the frequency of oscillation of a Wien bridge oscillator is: (1) 3 (2) 1/3 (3) 1/29 (4) 3/29 114. A 4-bit R/2R digital-to-analog (DAC) converter has a reference of 5 volts. What is the analog output for the input code 1010: (1) 0.3125 V (2) 3.125 V (3) 0.78125 V (4) -3.125 V (3) 0.78125 V (4) -3.125 V (3) 0.78125 V (4) -3.125 V (4) -3.125 V (5) 0.78125 V (4) -3.125 V (5) 0.78125 V (4) -3.125 V (5) 0.78125 V (6) 0.78125 V (7) 0.78125 V (8) 0.78125 V (9)				` '	
RAL instruction: (1) Once (2) Twice (4) Four times (3) तीन बार (2) दो बार (4) चार		(4) Determine sign and ma	agnitude	(4) चिह्न और परिमाण नि	ाधारित करते हैं
112. An energy signal has G(f) = 10. Its energy density spectrum is: (1) 10 (2) 100 (3) 50 (4) 20 (3) 50 (4) 20 113. Feedback factor at the frequency of oscillation of a Wien bridge oscillator is: (1) 3 (2) 1/3 (3) 1/29 (4) 3/29 114. A 4-bit R/2R digital-to-analog (DAC) converter has a reference of 5 volts. What is the analog output for the input code 1010: (1) 0.3125 V (2) 3.125 V (3) 0.78125 V (4) -3.125 V (7) (1) 0.3125 V (8) 0.78125 V (9) 3.125 V (1) 0.3125 V (1) 0.3125 V (2) 3.125 V (3) 0.78125 V (4) -3.125 V (4) -3.125 V (5) 0.78125 V (7) 0.3125 V (8) 0.78125 V (8) 0.78125 V (9) 0.78125 V (9) 0.78125 V (1) 0.3125 V (1) 0.3125 V (2) 0.78125 V (3) 0.78125 V (4) -3.125 V (4) -3.125 V (5) 0.78125 V (7) 0.3125 V (8) 0.78125 V (8) 0.78125 V (9) 0.78125 V (1) 0.3125 V (1) 0.3125 V (2) 0.78125 V (3) 0.78125 V (4) -3.125 V (5) 0.78125 V (7) 0.3125 V (8) 0.78125 V (1) 0.3125 V (1) 0.3125 V (1) 0.3125 V (1) 0.3125 V (2) 0.78125 V (3) 0.78125 V (4) -3.125 V (4) -3.125 V (5) 0.78125 V (6) 0.78125 V (7) 0.3125 V (7) 0.31	111.		8 in 8085 we have to use		
112. An energy signal has G(f) = 10. Its energy density spectrum is: (1) 10 (2) 100 (3) 50 (4) 20 (1) 100 (3) 50 (4) 20 113. Feedback factor at the frequency of oscillation of a Wien bridge oscillator is: (1) 3 (2) 1/3 (3) 1/29 (4) 3/29 114. A 4-bit R/2R digital-to-analog (DAC) converter has a reference of 5 volts. What is the analog output for the input code 1010: (1) 0.3125 V (2) 3.125 V (3) 0.78125 V (4) -3.125 V (7) (1) 0.3125 V (8) 0.78125 V (9) 2. L and C in parallel (7) (3) Capacitance (4) L and C in series 116. In a directional coupler: (1) Isolation (dB) equals coupling plus directivity (2) Coupling (dB) equals isolation plus directivity (2) Coupling (dB) equals isolation plus directivity (2) Cupling (dB) equals isolation plus directivity (2) 3.125 V (1) 10.3125 V (2) 3.125 V (2) 3.125 V (3) 0.78125 V (4) -3.125 V (4) -3.125 V (4) -3.125 V (4) -3.125 V (5) Cupling (dB) equals isolation plus directivity (2) Coupling (dB) equals isolation plus directivity (2) Cypling (dB) equals isolation plus direc		(1) Once		* *	• •
\$\frac{1}{2} \text{ (1) } 10		(3) Thrice	(4) Four times	(3) तीन बार	(4) चार बार
113. Feedback factor at the frequency of oscillation of a Wien bridge oscillator is: (1) 3 (2) 1/3 (3) 1/29 (4) 3/29 114. A 4-bit R/2R digital-to-analog (DAC) converter has a reference of 5 volts. What is the analog output for the input code 1010: (1) 0.3125 V (2) 3.125 V (3) 0.78125 V (4) -3.125 V (4) 15. A quarter wave line open circuited at far end behaves as: (1) Inductance (2) L and C in parallel (3) Capacitance (4) L and C in series 116. In a directional coupler: (1) Isolation (dB) equals coupling plus directivity (2) Coupling (dB) equals isolation plus directivity (2) Coupling (dB) equals isolation plus directivity (2) Quarter wave line open directivity (3) Solution (4) Quarter wave line open directivity (4) L and C in series (5) Quarter wave line open directivity (5) Quarter wave line open directivity (6) Quarter wave line open directivity (7) Quarter wave line open directivity (8) Quarter wave line open directivity (8) Quarter wave line open directivity (8) Quarter wave line open directivity (9) Quarter wave line open directivity (1) Quarter wave line open directive line open dir	112.) = 10. Its energy density		= 10 है। इसका ऊर्जा घनत्व स्पेक्ट्रम
113. Feedback factor at the frequency of oscillation of a Wien bridge oscillator is: (1) 3 (2) 1/3 (3) 1/29 (4) 3/29 114. A 4-bit R/2R digital-to-analog (DAC) converter has a reference of 5 volts. What is the analog output for the input code 1010: (1) 0.3125 V (2) 3.125 V (3) 0.78125 V (4) -3.125 V (7) 0.3125 V (8) 0.78125 V (8) 0.78125 V (9) 0.78125 V (1) 0.781		(1) 10	(2) 100	(1) 10	(2) 100
a Wien bridge oscillator is: (1) 3 (2) 1/3 (3) 1/29 (4) 3/29 114. A 4-bit R/2R digital-to-analog (DAC) converter has a reference of 5 volts. What is the analog output for the input code 1010: (1) 0.3125 V (2) 3.125 V (3) 0.78125 V (4) -3.125 V (5) 0.78125 V (7) 0.3125 V (8) 0.78125 V (8) 0.78125 V (9) 0.78125 V (10) 0.78125 V (1		(3) 50	(4) 20	(3) 50	(4) 20
(1) 3 (2) 1/3 (3) 1/29 (4) 3/29 114. A 4-bit R/2R digital-to-analog (DAC) converter has a reference of 5 volts. What is the analog output for the input code 1010: (1) 0.3125 V (2) 3.125 V (3) 0.78125 V (4) -3.125 V (5) 0.78125 V (7) 0.3125 V (7) 0.3125 V (8) 0.78125 V (8) 0.78125 V (9) 0.78125 V (10) 0.3125	113.	Feedback factor at the fre	equency of oscillation of	113. वियन सेतु दोलित्र के दोलन	की आवृत्ति पर पुनर्भरण कारक हैः
114. A 4-bit R/2R digital-to-analog (DAC) converter has a reference of 5 volts. What is the analog output for the input code 1010: (1) 0.3125 V (2) 3.125 V (3) 0.78125 V (4) -3.125 V (5) 0.78125 V (7) 0.3125 V (8) 0.78125 V (8) 0.78125 V (9) 0.78125 V (10) 0.3125 V		a Wien bridge oscillator is	s:		
114. A 4-bit R/2R digital-to-analog (DAC) converter has a reference of 5 volts. What is the analog output for the input code 1010: (1) 0.3125 V (2) 3.125 V (3) 0.78125 V (4) -3.125 V (3) 0.78125 V (4) -3.125 V (3) 0.78125 V (4) -3.125 V (4) -3.125 V (5) 0.78125 V (6) 0.3125 V (7) 0.3125 V (8) 0.78125 V (8) 0.78125 V (8) 0.78125 V (9) 0.78125 V (1) 0.3125 V (1) 0.3125 V (1) 0.3125 V (1) 0.3125 V (2) 0.78125 V (1) 0.3125 V (2) 0.78125 V (3) 0.78125 V (4) -3.125 V (4) -3.125 V (5) 0.78125 V (6) 0.78125 V (7) 0.3125 V (8) 0.78125 V (1) 0.3125 V (1				(3) 1/29	(4) 3/29
a reference of 5 volts. What is the analog output for the input code 1010: (1) 0.3125 V (2) 3.125 V (3) 0.78125 V (4) -3.125 V (5) 0.78125 V (6) -3.125 V (7) 0.3125 V (8) 0.78125 V (8) 0.78125 V (8) 0.78125 V (8) 0.78125 V (9) 0.78125 V (10) 0.3125 V ((3) 1/29	(4) 3/29		
for the input code 1010: (1) 0.3125 V (2) 3.125 V (3) 0.78125 V (4) -3.125 V (5) 0.78125 V (6) -3.125 V (7) 0.3125 V (8) 0.78125 V (9) 0.78125 V (1) 0.3125 V (1) 0.3125 V (2) 0.78125 V (3) 0.78125 V (4) -3.125 V (4) -3.125 V (5) 0.78125 V (6) 0.78125 V (7) 0.3125 V (8) 0.78125 V (9) 0.78125 V (9) 0.78125 V (1) 0.3125 V (1) 0.3125 V (2) 0.78125 V (3) 0.78125 V (4) -3.125 V (4) -3.125 V (5) 0.78125 V (6) 0.78125 V (7) 0.3125 V (8) 0.78125 V (9) 0.78125 V (9) 0.78125 V (1) 0.3125 V (1) 0.3125 V (2) 0.78125 V (3) 0.78125 V (4) -3.125 V (4) -3.125 V (4) -3.125 V (5) 0.78125 V (6) 0.78125 V (7) 0.3125 V (7) 0.3125 V (8) 0.78125 V (9) 0.78125 V (1) 0.3125 V (1) 0.3125 V (1) 0.3125 V (2) 0.78125 V (3) 0.78125 V (4) -3.125 V (5) 0.78125 V (6) 0.78125 V (7) 0.3125 V (7) 0.3125 V (8) 0.78125 V (9) 0.78125 V (1) 0.3125 V (2) 0.78125 V (3) 0.78125 V (4) -3.125 V (1) 0.3125 V	114.	A 4-bit R/2R digital-to-ana	alog (DAC) converter has		
(1) 0.3125 V (2) 3.125 V (3) 0.78125 V (4) -3.125 V (3) 0.78125 V (4) -3.125 V (5) (7) (8) Example 10.			hat is the analog output		कांड 1010 के लिए अनुरूप निगम
(3) 0.78125 ∨ (4) −3.125 ∨ (3) 0.78125 ∨ (4) −3.125 ∨ 115. A quarter wave line open circuited at far end behaves as: (1) Inductance (2) L and C in parallel (3) Capacitance (4) L and C in series (1) Isolation (dB) equals coupling plus directivity (2) Coupling (dB) equals isolation plus directivity (3) 0.78125 ∨ (4) −3.125 ∨ (4) −3.125 ∨ (4) −3.125 ∨ (4) −3.125 ∨ (4) −3.125 ∨ (4) −3.125 ∨ (4) −3.125 ∨ (4) −3.125 ∨ (4) −3.125 ∨ (4) −3.125 ∨ (5) Qivita to try ty and the first to the			(0) 0 405 \/		(2) 2.425 \/
115. A quarter wave line open circuited at far end behaves as: (1) Inductance (2) L and C in parallel (3) Capacitance (4) L and C in series (1) Isolation (dB) equals coupling plus directivity (2) Coupling (dB) equals isolation plus directivity (2) L and C in parallel (3) धारिता (4) L तथा C अर्णी में (4) L तथा C श्रेणी में (5) वियोजन (dB) युग्मन जमा दिशिकता के बराबर होता है (6) युग्मन (dB) वियोजन जमा दिशिकता के बराबर होता है		` '			• •
behaves as: (1) Inductance (2) L and C in parallel (3) Capacitance (4) L and C in series (1) प्रेरकत्व (2) L तथा C समानांतर में (3) धारिता (4) L तथा C श्रेणी में 116. In a directional coupler: (1) Isolation (dB) equals coupling plus directivity (2) Coupling (dB) equals isolation plus directivity (2) Quals isolation plus directivity			. ,	• •	
(3) Capacitance (4) L and C in series (3) धारिता (4) L तथा C श्रेणी में 116. In a directional coupler: (1) Isolation (dB) equals coupling plus directivity (2) Coupling (dB) equals isolation plus directivity (2) User (dB) युग्मन जमा दिशिकता के बराबर होता है (2) युग्मन (dB) वियोजन जमा दिशिकता के बराबर होता है	115.	A quarter wave line op	en circuited at far end		रिपायत यतुयारा तरेग ।गन्म खप म
(1) Isolation (dB) equals coupling plus directivity (1) वियोजन (dB) युग्मन जमा दिशिकता के बराबर होता है (2) Coupling (dB) equals isolation plus directivity (2) युग्मन (dB) वियोजन जमा दिशिकता के बराबर होता है		behaves as:		_	(२) । तथा ८ समानांतर में
(2) Coupling (dB) equals isolation plus directivity (2) युग्मन (dB) वियोजन जमा दिशिकता के बराबर होता है		behaves as: (1) Inductance	(2) L and C in parallel	(1) प्रेरकत्व	• •
	116.	behaves as: (1) Inductance (3) Capacitance	(2) L and C in parallel	(1) प्रेरकत्व (3) धारिता	• •
	116.	behaves as: (1) Inductance (3) Capacitance In a directional coupler:	(2) L and C in parallel(4) L and C in series	(1) प्रेरकत्व(3) धारिता116. निर्देशात्मक युग्मक मेंः(1) वियोजन (dB) युग्मन रि	(4) L तथा C श्रेणी में जमा दिशिकता के बराबर होता है
(3) Directivity (dB) equals isolation plus coupling (3) दिशिकता (dB) वियोजन जमा युग्मन के बराबर होता है (4) Isolation (dB) equals (coupling) (directivity) (4) वियोजन (dB) (युग्मन) (दिशिकता) के बराबर होता है	116.	 behaves as: (1) Inductance (3) Capacitance In a directional coupler: (1) Isolation (dB) equals co (2) Coupling (dB) equals is 	(2) L and C in parallel (4) L and C in series pupling plus directivity solation plus directivity	 (1) प्रेरकत्व (3) धारिता 116. निर्देशात्मक युग्मक मेंः (1) वियोजन (dB) युग्मन र् (2) युग्मन (dB) वियोजन र 	(4) L तथा C श्रेणी मेंजमा दिशिकता के बराबर होता हैजमा दिशिकता के बराबर होता है
	116.	 behaves as: (1) Inductance (3) Capacitance In a directional coupler: (1) Isolation (dB) equals of the coupling (dB) equals is (2) Coupling (dB) equals is (3) Directivity (dB) equals is 	(2) L and C in parallel (4) L and C in series pupling plus directivity solation plus directivity isolation plus coupling	 (1) प्रेरकत्व (3) धारिता 116. निर्देशात्मक युग्मक मैंः (1) वियोजन (dB) युग्मन र् (2) युग्मन (dB) वियोजन र (3) दिशिकता (dB) वियोजन 	(4) L तथा C श्रेणी में जमा दिशिकता के बराबर होता है जमा दिशिकता के बराबर होता है न जमा युग्मन के बराबर होता है
		behaves as: (1) Inductance (3) Capacitance In a directional coupler: (1) Isolation (dB) equals coupled: (2) Coupling (dB) equals is (3) Directivity (dB) equals is (4) Isolation (dB) equals (descriptions)	(2) L and C in parallel (4) L and C in series pupling plus directivity solation plus directivity isolation plus coupling coupling) (directivity)	 (1) प्रेरकत्व (3) धारिता 116. निर्देशात्मक युग्मक मेंः (1) वियोजन (dB) युग्मन ((2) युग्मन (dB) वियोजन ((3) दिशिकता (dB) वियोजन ((4) वियोजन (dB) (युग्मन) 	(4) L तथा C श्रेणी में जमा दिशिकता के बराबर होता है जमा दिशिकता के बराबर होता है न जमा युग्मन के बराबर होता है) (दिशिकता) के बराबर होता है
		behaves as: (1) Inductance (3) Capacitance In a directional coupler: (1) Isolation (dB) equals of (2) Coupling (dB) equals is (3) Directivity (dB) equals is (4) Isolation (dB) equals of In a circular waveguide the	(2) L and C in parallel (4) L and C in series pupling plus directivity solation plus directivity isolation plus coupling coupling) (directivity) ne dominant mode is:	 (1) प्रेरकत्व (3) धारिता 116. निर्देशात्मक युग्मक में: (1) वियोजन (dB) युग्मन (2) युग्मन (dB) वियोजन (3) दिशिकता (dB) वियोजन (4) वियोजन (dB) (युग्मन) 117. एक वृत्ताकार तरंगपथक में, 	(4) L तथा C श्रेणी में जमा दिशिकता के बराबर होता है जमा दिशिकता के बराबर होता है जमा युग्मन के बराबर होता है (दिशिकता) के बराबर होता है प्रभावी विषा है:
		behaves as: (1) Inductance (3) Capacitance In a directional coupler: (1) Isolation (dB) equals of (2) Coupling (dB) equals is (3) Directivity (dB) equals is (4) Isolation (dB) equals (described in a circular waveguide the (1) TE ₀₁	(2) L and C in parallel (4) L and C in series pupling plus directivity solation plus directivity isolation plus coupling coupling) (directivity) ne dominant mode is: (2) TE ₁₁	 (1) प्रेरकत्व (3) धारिता 116. निर्देशात्मक युग्मक में: (1) वियोजन (dB) युग्मन (2) युग्मन (dB) वियोजन (3) दिशिकता (dB) वियोजन (4) वियोजन (dB) (युग्मन 117. एक वृत्ताकार तरंगपथक में, (1) TE₀₁ 	(4) L तथा C श्रेणी में जमा दिशिकता के बराबर होता है जमा दिशिकता के बराबर होता है न जमा युग्मन के बराबर होता है) (दिशिकता) के बराबर होता है प्रभावी विषा है: (2) TE11
· · · · · · · · · · · · · · · · · · ·	117.	behaves as: (1) Inductance (3) Capacitance In a directional coupler: (1) Isolation (dB) equals of (2) Coupling (dB) equals is (3) Directivity (dB) equals is (4) Isolation (dB) equals of In a circular waveguide the (1) TE ₀₁ (3) TE ₂₀	(2) L and C in parallel (4) L and C in series pupling plus directivity solation plus directivity isolation plus coupling coupling) (directivity) ne dominant mode is: (2) TE ₁₁ (4) TE ₂₁	(1) प्रेरकत्व (3) धारिता 116. निर्देशात्मक युग्मक में: (1) वियोजन (dB) युग्मन (dB) वियोजन (dB) वियोजन (dB) वियोजन (dB) वियोजन (dB) वियोजन (dB) वियोजन (dB) (युग्मन) 117. एक वृत्ताकार तरंगपथक में, (1) TE ₀₁ (3) TE ₂₀	(4) L तथा C श्रेणी में जमा दिशिकता के बराबर होता है जमा दिशिकता के बराबर होता है न जमा युग्मन के बराबर होता है) (दिशिकता) के बराबर होता है प्रभावी विषा है: (2) TE ₁₁ (4) TE ₂₁
(1) Parients	117.	behaves as: (1) Inductance (3) Capacitance In a directional coupler: (1) Isolation (dB) equals of (2) Coupling (dB) equals is (3) Directivity (dB) equals is (4) Isolation (dB) equals of In a circular waveguide the (1) TE ₀₁ (3) TE ₂₀ In a klystron amplifier the	(2) L and C in parallel (4) L and C in series coupling plus directivity colation plus directivity isolation plus coupling coupling) (directivity) the dominant mode is: (2) TE ₁₁ (4) TE ₂₁ input cavity is called:	(1) प्रेरकत्व (3) धारिता 116. निर्देशात्मक युग्मक में: (1) वियोजन (dB) युग्मन र् (2) युग्मन (dB) वियोजन र (3) दिशिकता (dB) वियोजन (d) वियोजन (dB) (युग्मन) 117. एक वृत्ताकार तरंगपथक में, (1) TE ₀₁ (3) TE ₂₀ 118. क्लिस्ट्रोन ऐम्प्लीफायर में, नि	(4) L तथा C श्रेणी में जमा दिशिकता के बराबर होता है जमा दिशिकता के बराबर होता है न जमा युग्मन के बराबर होता है) (दिशिकता) के बराबर होता है प्रभावी विषा है: (2) TE ₁₁ (4) TE ₂₁ वेश गुहिका कहलाती है:
(4)	117.	behaves as: (1) Inductance (3) Capacitance In a directional coupler: (1) Isolation (dB) equals of (2) Coupling (dB) equals is (3) Directivity (dB) equals is (4) Isolation (dB) equals of (4) Isolation (dB) equals (december of the coupling december of the coupling decemb	(2) L and C in parallel (4) L and C in series pupling plus directivity solation plus directivity isolation plus coupling coupling) (directivity) the dominant mode is: (2) TE ₁₁ (4) TE ₂₁ input cavity is called: (2) Catcher	(1) प्रेरकत्व (3) धारिता 116. निर्देशात्मक युग्मक में: (1) वियोजन (dB) युग्मन र् (2) युग्मन (dB) वियोजन (dB) वियोजन (dB) वियोजन (dB) वियोजन (dB) (युग्मन) 117. एक वृत्ताकार तरंगपथक में, (1) TE ₀₁ (3) TE ₂₀ 118. क्लिस्ट्रोन ऐम्प्लीफायर में, नि	(4) L तथा C श्रेणी में जमा दिशिकता के बराबर होता है जमा दिशिकता के बराबर होता है त जमा युग्मन के बराबर होता है) (दिशिकता) के बराबर होता है प्रभावी विधा है: (2) TE ₁₁ (4) TE ₂₁ वेश गुहिका कहलाती है: (2) प्रप्राही
119. A loss less line of characteristic impedance Z₀ is 119. एक अभिलक्षणिक प्रतिबाद्या Z₀ की हानिविहीन लाइन −jZ₀ मान terminated in pure reactance of −jZ₀ value. VSWR is के शुद्ध प्रतिघात पर अंतक हो गई। VSWR है:	117. 118.	behaves as: (1) Inductance (3) Capacitance In a directional coupler: (1) Isolation (dB) equals of (2) Coupling (dB) equals is (3) Directivity (dB) equals is (4) Isolation (dB) equals of In a circular waveguide the (1) TE ₀₁ (3) TE ₂₀ In a klystron amplifier the (1) Buncher (3) Pierce gun	(2) L and C in parallel (4) L and C in series coupling plus directivity colation plus directivity isolation plus coupling coupling) (directivity) the dominant mode is: (2) TE ₁₁ (4) TE ₂₁ input cavity is called: (2) Catcher (4) Collector	(1) प्रेरकत्व (3) धारिता 116. निर्देशात्मक युग्मक में: (1) वियोजन (dB) युग्मन र् (2) युग्मन (dB) वियोजन र (3) दिशिकता (dB) वियोजन र (4) वियोजन (dB) (युग्मन 117. एक वृत्ताकार तरंगपथक में, (1) TE ₀₁ (3) TE ₂₀ 118. क्लिस्ट्रोन ऐम्प्लीफायर में, नि (1) बंचर (3) संवेधन गन	(4) L तथा C श्रेणी में जमा दिशिकता के बराबर होता है जमा दिशिकता के बराबर होता है न जमा युग्मन के बराबर होता है (दिशिकता) के बराबर होता है प्रभावी विषा है: (2) TE ₁₁ (4) TE ₂₁ वेश गुहिका कहलाती है: (2) प्रमाही (4) संग्राही
	117. 118.	behaves as: (1) Inductance (3) Capacitance In a directional coupler: (1) Isolation (dB) equals of (2) Coupling (dB) equals is (3) Directivity (dB) equals is (4) Isolation (dB) equals of (4) Isolation (dB) equals of (5) In a circular waveguide the (1) TE ₀₁ (3) TE ₂₀ In a klystron amplifier the (1) Buncher (3) Pierce gun A loss less line of characteristics	(2) L and C in parallel (4) L and C in series coupling plus directivity solation plus directivity isolation plus coupling coupling) (directivity) the dominant mode is: (2) TE ₁₁ (4) TE ₂₁ input cavity is called: (2) Catcher (4) Collector cteristic impedance Z ₀ is is is dee of -jZ ₀ value. VSWR is	(1) प्रेरकत्व (3) धारिता 116. निर्देशात्मक युग्मक में: (1) वियोजन (dB) युग्मन र् (2) युग्मन (dB) वियोजन (dB) र् (1) वियोजन (dB) (युग्मन (dB) (युग्मन (dB) (युग्मन (dB) (dB) (dB) (dB) (dB) (dB) (dB) (dB)	(4) L तथा C श्रेणी में जमा दिशिकता के बराबर होता है जमा दिशिकता के बराबर होता है जमा दिशिकता के बराबर होता है जमा युग्मन के बराबर होता है) (दिशिकता) के बराबर होता है प्रभावी विषा है: (2) TE₁₁ (4) TE₂₁ वेश गुहिका कहलाती है: (2) प्रग्राही (4) संग्राही Z₀ की हानिविहीन लाइन −jZ₀ मान हो गई। VSWR है:
(1) 10 (2) 2 (1) 10 (2) 2	117. 118.	behaves as: (1) Inductance (3) Capacitance In a directional coupler: (1) Isolation (dB) equals of (2) Coupling (dB) equals is (3) Directivity (dB) equals is (4) Isolation (dB) equals of In a circular waveguide the (1) TE ₀₁ (3) TE ₂₀ In a klystron amplifier the (1) Buncher (3) Pierce gun A loss less line of charaterminated in pure reactant (1) 10	(2) L and C in parallel (4) L and C in series coupling plus directivity colation plus directivity isolation plus coupling coupling) (directivity) the dominant mode is: (2) TE ₁₁ (4) TE ₂₁ input cavity is called: (2) Catcher (4) Collector cteristic impedance Z ₀ is the of -jZ ₀ value. VSWR is (2) 2	(1) प्रेरकत्व (3) धारिता 116. निर्देशात्मक युग्मक में: (1) वियोजन (dB) युग्मन र् (2) युग्मन (dB) वियोजन र (3) दिशिकता (dB) वियोजन र (4) वियोजन (dB) (युग्मन 117. एक वृत्ताकार तरंगपथक में, (1) TE ₀₁ (3) TE ₂₀ 118. क्लिस्ट्रोन ऐम्प्लीफायर में, नि (1) बंचर (3) संवेधन गन 119. एक अभिलक्षणिक प्रतिबाधा के शुद्ध प्रतिधात पर अंतक (1) 10	(4) L तथा C श्रेणी में जमा दिशिकता के बराबर होता है जमा दिशिकता के बराबर होता है जमा दिशिकता के बराबर होता है जमा युग्मन के बराबर होता है) (दिशिकता) के बराबर होता है प्रभावी विषा है: (2) TE₁₁ (4) TE₂₁ वेश गुहिका कहलाती है: (2) प्रग्राही (4) संग्राही Z₀ की हानिविहीन लाइन -jZ₀ मान हो गई। VSWR है: (2) 2
(1) 10 (2) 2 (1) 10 (2) 2 (3) 1 (4) Infinity (3) 1 (4) अनंत	117. 118.	behaves as: (1) Inductance (3) Capacitance In a directional coupler: (1) Isolation (dB) equals of (2) Coupling (dB) equals is (3) Directivity (dB) equals is (4) Isolation (dB) equals of In a circular waveguide the (1) TE ₀₁ (3) TE ₂₀ In a klystron amplifier the (1) Buncher (3) Pierce gun A loss less line of charaterminated in pure reactant (1) 10	(2) L and C in parallel (4) L and C in series coupling plus directivity colation plus directivity isolation plus coupling coupling) (directivity) the dominant mode is: (2) TE ₁₁ (4) TE ₂₁ input cavity is called: (2) Catcher (4) Collector cteristic impedance Z ₀ is the of -jZ ₀ value. VSWR is (2) 2	(1) प्रेरकत्व (3) धारिता 116. निर्देशात्मक युग्मक में: (1) वियोजन (dB) युग्मन र् (2) युग्मन (dB) वियोजन (dB) वियोजन (dB) वियोजन (dB) (युग्मन) (4) वियोजन (dB) (युग्मन) 117. एक वृत्ताकार तरंगपथक में, (1) TE ₀₁ (3) TE ₂₀ 118. विलस्ट्रोन ऐम्प्लीफायर में, नि (1) बंचर (3) संवेधन गन 119. एक अभिलक्षणिक प्रतिबाधा के शुद्ध प्रतिधात पर अंतक (1) 10 (3) 1	(4) L तथा C श्रेणी में जमा दिशिकता के बराबर होता है जमा दिशिकता के बराबर होता है जमा दिशिकता के बराबर होता है जमा युग्मन के बराबर होता है) (दिशिकता) के बराबर होता है प्रभावी विषा है: (2) TE₁₁ (4) TE₂₁ वेश गुहिका कहलाती है: (2) प्रग्राही (4) संग्राही Z₀ की हानिविहीन लाइन ─jZ₀ मान हो गई। VSWR है: (2) 2 (4) अनंत
(1) 10 (2) 2 (1) 10 (2) 2	117. 118. 119.	behaves as: (1) Inductance (3) Capacitance In a directional coupler: (1) Isolation (dB) equals coupled: (2) Coupling (dB) equals is: (3) Directivity (dB) equals is: (4) Isolation (dB) equals is: (4) Isolation (dB) equals is: (5) In a circular waveguide the coupled: (1) TE ₀₁ (3) TE ₂₀ In a klystron amplifier the coupled: (1) Buncher (3) Pierce gun A loss less line of characterminated in pure reactant coupled: (1) 10 (3) 1	(2) L and C in parallel (4) L and C in series coupling plus directivity solation plus directivity isolation plus coupling coupling) (directivity) the dominant mode is: (2) TE ₁₁ (4) TE ₂₁ input cavity is called: (2) Catcher (4) Collector cteristic impedance Z ₀ is ice of -jZ ₀ value. VSWR is (2) 2 (4) Infinity	(1) प्रेरकत्व (3) धारिता 116. निर्देशात्मक युग्मक में: (1) वियोजन (dB) युग्मन र् (2) युग्मन (dB) वियोजन (dB) वियोजन (dB) वियोजन (dB) (युग्मन) (4) वियोजन (dB) (युग्मन) 117. एक वृत्ताकार तरंगपथक में, (1) TE ₀₁ (3) TE ₂₀ 118. विलस्ट्रोन ऐम्प्लीफायर में, नि (1) बंचर (3) संवेधन गन 119. एक अभिलक्षणिक प्रतिबाधा के शुद्ध प्रतिधात पर अंतक (1) 10 (3) 1	(4) L तथा C श्रेणी में जमा दिशिकता के बराबर होता है जमा दिशिकता के बराबर होता है जमा दिशिकता के बराबर होता है जमा युग्मन के बराबर होता है) (दिशिकता) के बराबर होता है प्रभावी विषा है: (2) TE₁₁ (4) TE₂₁ वेश गुहिका कहलाती है: (2) प्रग्राही (4) संग्राही Z₀ की हानिविहीन लाइन ─jZ₀ मान हो गई। VSWR है: (2) 2 (4) अनंत
(1) 10 (2) 2 (1) 10 (2) 2 (2) (3) 1 (4) Infinity (3) 1 (4) अनंत 120. The velocity factor of a transmission line depends on: (1) Temperature (1) तापमान	117. 118. 119.	behaves as: (1) Inductance (3) Capacitance In a directional coupler: (1) Isolation (dB) equals of (2) Coupling (dB) equals is (3) Directivity (dB) equals is (4) Isolation (dB) equals (d) Isolation (dB) equals (d) In a circular waveguide the (1) TE ₀₁ (3) TE ₂₀ In a klystron amplifier the (1) Buncher (3) Pierce gun A loss less line of characterminated in pure reactant (1) 10 (3) 1 The velocity factor of a trant (1) Temperature	(2) L and C in parallel (4) L and C in series coupling plus directivity solation plus directivity isolation plus coupling coupling) (directivity) the dominant mode is: (2) TE ₁₁ (4) TE ₂₁ input cavity is called: (2) Catcher (4) Collector cteristic impedance Z ₀ is ice of -jZ ₀ value. VSWR is (2) 2 (4) Infinity	(1) प्रेरकत्व (3) धारिता 116. निर्देशात्मक युग्मक में: (1) वियोजन (dB) युग्मन र् (2) युग्मन (dB) वियोजन (dB) वियोजन (dB) वियोजन (dB) वियोजन (dB) (युग्मन) 117. एक वृत्ताकार तरंगपथक में, (1) TE ₀₁ (3) TE ₂₀ 118. क्लिस्ट्रोन ऐम्प्लीफायर में, नि (1) बंचर (3) संवेधन गन 119. एक अभिलक्षणिक प्रतिबाधा के शुद्ध प्रतिधात पर अंतक (1) 10 (3) 1 120. संचरण लाइन का वेग कारव	(4) L तथा C श्रेणी में जमा दिशिकता के बराबर होता है जमा दिशिकता के बराबर होता है जमा दिशिकता के बराबर होता है जमा युग्मन के बराबर होता है) (दिशिकता) के बराबर होता है प्रभावी विषा है: (2) TE₁₁ (4) TE₂₁ वेश गुहिका कहलाती है: (2) प्रग्राही (4) संग्राही Z₀ की हानिविहीन लाइन ─jZ₀ मान हो गई। VSWR है: (2) 2 (4) अनंत
(1) 10 (2) 2 (1) 10 (2) 2 (2) (3) 1 (4) Infinity (3) 1 (4) अनंत 120. The velocity factor of a transmission line depends on: (1) Temperature (2) Skin effect (1) 10 (2) 2 (4) अनंत (1) तापमान (2) उपरिस्तर प्रभाव	117. 118. 119.	behaves as: (1) Inductance (3) Capacitance In a directional coupler: (1) Isolation (dB) equals of (2) Coupling (dB) equals is (3) Directivity (dB) equals is (4) Isolation (dB) equals (d) Isolation (dB) equals (d) In a circular waveguide the (1) TE ₀₁ (3) TE ₂₀ In a klystron amplifier the (1) Buncher (3) Pierce gun A loss less line of characterminated in pure reactant (1) 10 (3) 1 The velocity factor of a trant (1) Temperature (2) Skin effect	(2) L and C in parallel (4) L and C in series coupling plus directivity colation plus coupling coupling) (directivity) coupling coupling coupling coupling (directivity) coupling coupling coupling coupling	(1) प्रेरकत्व (3) धारिता 116. निर्देशात्मक युग्मक में: (1) वियोजन (dB) युग्मन र् (2) युग्मन (dB) वियोजन (dB) वियोजन (dB) वियोजन (dB) वियोजन (dB) (युग्मन) 117. एक वृत्ताकार तरंगपथक में, (1) TE ₀₁ (3) TE ₂₀ 118. क्लिस्ट्रोन ऐम्प्लीफायर में, नि (1) बंचर (3) संवेधन गन 119. एक अभिलक्षणिक प्रतिबाधा के शुद्ध प्रतिधात पर अंतक (1) 10 (3) 1 120. संचरण लाइन का वेग कारव (1) तापमान (2) उपरिस्तर प्रभाव	(4) L तथा C श्रेणी में जमा दिशिकता के बराबर होता है जमा दिशिकता के बराबर होता है जमा दिशिकता के बराबर होता है जमा युग्मन के बराबर होता है) (दिशिकता) के बराबर होता है प्रभावी विधा है: (2) TE₁₁ (4) TE₂₁ वेश गुहिका कहलाती है: (2) प्रग्राही (4) संग्राही Z₀ की हानिविहीन लाइन -jZ₀ मान हो गई। VSWR है: (2) 2 (4) अनंत 5 निम्न पर निर्भर करता है:
terminated in pure reactance of –jZ₀ value. VSWR is	117. 118.	behaves as: (1) Inductance (3) Capacitance In a directional coupler: (1) Isolation (dB) equals of (2) Coupling (dB) equals is (3) Directivity (dB) equals is (4) Isolation (dB) equals of In a circular waveguide the (1) TE ₀₁ (3) TE ₂₀ In a klystron amplifier the (1) Buncher (3) Pierce gun	(2) L and C in parallel (4) L and C in series coupling plus directivity colation plus directivity isolation plus coupling coupling) (directivity) the dominant mode is: (2) TE ₁₁ (4) TE ₂₁ input cavity is called: (2) Catcher (4) Collector	(1) प्रेरकत्व (3) धारिता 116. निर्देशात्मक युग्मक में: (1) वियोजन (dB) युग्मन र् (2) युग्मन (dB) वियोजन (dB) वियोजन (dB) वियोजन (dB) वियोजन (dB) (युग्मन) 117. एक वृत्ताकार तरंगपथक में, (1) TE ₀₁ (3) TE ₂₀ 118. क्लिस्ट्रोन ऐम्प्लीफायर में, नि (1) बंचर (3) संवेधन गन 119. एक अभिलक्षणिक प्रतिबाधा	(4) L तथा C श्रेणी में जमा दिशिकता के बराबर होता है जमा दिशिकता के बराबर होता है जमा युग्मन के बराबर होता है) (दिशिकता) के बराबर होता है प्रभावी विषा है: (2) TE₁₁ (4) TE₂₁ वेश गुहिका कहलाती है: (2) प्रप्राही (4) संग्राही
	117. 118.	behaves as: (1) Inductance (3) Capacitance In a directional coupler: (1) Isolation (dB) equals of (2) Coupling (dB) equals is (3) Directivity (dB) equals is (4) Isolation (dB) equals of In a circular waveguide the (1) TE ₀₁ (3) TE ₂₀ In a klystron amplifier the (1) Buncher (3) Pierce gun A loss less line of characterminated in pure reactant	(2) L and C in parallel (4) L and C in series coupling plus directivity solation plus directivity isolation plus coupling coupling) (directivity) the dominant mode is: (2) TE ₁₁ (4) TE ₂₁ input cavity is called: (2) Catcher (4) Collector cteristic impedance Z ₀ is is is dee of -jZ ₀ value. VSWR is	(1) प्रेरकत्व (3) धारिता 116. निर्देशात्मक युग्मक में: (1) वियोजन (dB) युग्मन र् (2) युग्मन (dB) वियोजन (dB) र् (1) वियोजन (dB) (युग्मन (dB) (युग्मन (dB) (युग्मन (dB) (dB) (dB) (dB) (dB) (dB) (dB) (dB)	(4) L तथा C श्रेणी में जमा दिशिकता के बराबर होता है जमा दिशिकता के बराबर होता है जमा दिशिकता के बराबर होता है जमा युग्मन के बराबर होता है) (दिशिकता) के बराबर होता है प्रभावी विषा है: (2) TE₁₁ (4) TE₂₁ वेश गुहिका कहलाती है: (2) प्रग्राही (4) संग्राही Z₀ की हानिविहीन लाइन −jZ₀ मान हो गई। VSWR है:
(1) 10 (2) 2 (1) 10 (2) 2	117. 118.	behaves as: (1) Inductance (3) Capacitance In a directional coupler: (1) Isolation (dB) equals of (2) Coupling (dB) equals is (3) Directivity (dB) equals is (4) Isolation (dB) equals of In a circular waveguide the (1) TE ₀₁ (3) TE ₂₀ In a klystron amplifier the (1) Buncher (3) Pierce gun A loss less line of charaterminated in pure reactant (1) 10	(2) L and C in parallel (4) L and C in series coupling plus directivity colation plus directivity isolation plus coupling coupling) (directivity) the dominant mode is: (2) TE ₁₁ (4) TE ₂₁ input cavity is called: (2) Catcher (4) Collector cteristic impedance Z ₀ is the of -jZ ₀ value. VSWR is (2) 2	(1) प्रेरकत्व (3) धारिता 116. निर्देशात्मक युग्मक में: (1) वियोजन (dB) युग्मन र् (2) युग्मन (dB) वियोजन र (3) दिशिकता (dB) वियोजन र (4) वियोजन (dB) (युग्मन 117. एक वृत्ताकार तरंगपथक में, (1) TE ₀₁ (3) TE ₂₀ 118. क्लिस्ट्रोन ऐम्प्लीफायर में, नि (1) बंचर (3) संवेधन गन 119. एक अभिलक्षणिक प्रतिबाधा के शुद्ध प्रतिधात पर अंतक (1) 10	(4) L तथा C श्रेणी में जमा दिशिकता के बराबर होता है जमा दिशिकता के बराबर होता है जमा दिशिकता के बराबर होता है जमा युग्मन के बराबर होता है) (दिशिकता) के बराबर होता है प्रभावी विषा है: (2) TE₁₁ (4) TE₂₁ वेश गुहिका कहलाती है: (2) प्रग्राही (4) संग्राही Z₀ की हानिविहीन लाइन -jZ₀ मान हो गई। VSWR है: (2) 2
(1) 10 (2) 2 (1) 10 (2) 2 (3) 1 (4) Infinity (3) 1 (4) अनंत	117. 118. 119.	behaves as: (1) Inductance (3) Capacitance In a directional coupler: (1) Isolation (dB) equals coupled: (2) Coupling (dB) equals is: (3) Directivity (dB) equals is: (4) Isolation (dB) equals is: (4) Isolation (dB) equals is: (5) In a circular waveguide the coupled: (1) TE ₀₁ (3) TE ₂₀ In a klystron amplifier the coupled: (1) Buncher (3) Pierce gun A loss less line of characterminated in pure reactant coupled: (1) 10 (3) 1	(2) L and C in parallel (4) L and C in series coupling plus directivity solation plus directivity isolation plus coupling coupling) (directivity) the dominant mode is: (2) TE ₁₁ (4) TE ₂₁ input cavity is called: (2) Catcher (4) Collector cteristic impedance Z ₀ is ice of -jZ ₀ value. VSWR is (2) 2 (4) Infinity	(1) प्रेरकत्व (3) धारिता 116. निर्देशात्मक युग्मक में: (1) वियोजन (dB) युग्मन र् (2) युग्मन (dB) वियोजन (dB) वियोजन (dB) वियोजन (dB) (युग्मन) (4) वियोजन (dB) (युग्मन) 117. एक वृत्ताकार तरंगपथक में, (1) TE ₀₁ (3) TE ₂₀ 118. विलस्ट्रोन ऐम्प्लीफायर में, नि (1) बंचर (3) संवेधन गन 119. एक अभिलक्षणिक प्रतिबाधा के शुद्ध प्रतिधात पर अंतक (1) 10 (3) 1	(4) L तथा C श्रेणी में जमा दिशिकता के बराबर होता है जमा दिशिकता के बराबर होता है जमा दिशिकता के बराबर होता है जमा युग्मन के बराबर होता है) (दिशिकता) के बराबर होता है प्रभावी विषा है: (2) TE₁₁ (4) TE₂₁ वेश गुहिका कहलाती है: (2) प्रग्राही (4) संग्राही Z₀ की हानिविहीन लाइन ─jZ₀ मान हो गई। VSWR है: (2) 2 (4) अनंत
(1) 10 (2) 2 (1) 10 (2) 2 (3) 1 (4) Infinity (3) 1 (4) अनंत 120. The velocity factor of a transmission line depends on: 120. संचरण लाइन का वेग कारक निम्न पर निर्भर करता है:	117. 118. 119.	behaves as: (1) Inductance (3) Capacitance In a directional coupler: (1) Isolation (dB) equals of (2) Coupling (dB) equals is (3) Directivity (dB) equals is (4) Isolation (dB) equals of In a circular waveguide the (1) TE ₀₁ (3) TE ₂₀ In a klystron amplifier the (1) Buncher (3) Pierce gun A loss less line of characterminated in pure reactant (1) 10 (3) 1 The velocity factor of a trans	(2) L and C in parallel (4) L and C in series coupling plus directivity solation plus directivity isolation plus coupling coupling) (directivity) the dominant mode is: (2) TE ₁₁ (4) TE ₂₁ input cavity is called: (2) Catcher (4) Collector cteristic impedance Z ₀ is ice of -jZ ₀ value. VSWR is (2) 2 (4) Infinity	(1) प्रेरकत्व (3) धारिता 116. निर्देशात्मक युग्मक में: (1) वियोजन (dB) युग्मन र् (2) युग्मन (dB) वियोजन (dB) वियोजन (dB) वियोजन (dB) वियोजन (dB) वियोजन (dB) (युग्मन) 117. एक वृत्ताकार तरंगपथक में, (1) TE ₀₁ (3) TE ₂₀ 118. क्लिस्ट्रोन ऐम्प्लीफायर में, नि (1) बंचर (3) संवेधन गन 119. एक अभिलक्षणिक प्रतिबाधा के शुद्ध प्रतिधात पर अंतक (1) 10 (3) 1	(4) L तथा C श्रेणी में जमा दिशिकता के बराबर होता है जमा दिशिकता के बराबर होता है जमा दिशिकता के बराबर होता है जमा युग्मन के बराबर होता है) (दिशिकता) के बराबर होता है प्रभावी विषा है: (2) TE₁₁ (4) TE₂₁ वेश गुहिका कहलाती है: (2) प्रग्राही (4) संग्राही Z₀ की हानिविहीन लाइन ─jZ₀ मान हो गई। VSWR है: (2) 2 (4) अनंत
(1) 10 (2) 2 (1) 10 (2) 2 (2) (3) 1 (4) Infinity (3) 1 (4) अनंत 120. The velocity factor of a transmission line depends on: (1) Temperature (1) तापमान	117. 118. 119.	behaves as: (1) Inductance (3) Capacitance In a directional coupler: (1) Isolation (dB) equals of (2) Coupling (dB) equals is (3) Directivity (dB) equals is (4) Isolation (dB) equals (d) Isolation (dB) equals (d) In a circular waveguide the (1) TE ₀₁ (3) TE ₂₀ In a klystron amplifier the (1) Buncher (3) Pierce gun A loss less line of characterminated in pure reactant (1) 10 (3) 1 The velocity factor of a trant (1) Temperature	(2) L and C in parallel (4) L and C in series coupling plus directivity solation plus directivity isolation plus coupling coupling) (directivity) the dominant mode is: (2) TE ₁₁ (4) TE ₂₁ input cavity is called: (2) Catcher (4) Collector cteristic impedance Z ₀ is ice of -jZ ₀ value. VSWR is (2) 2 (4) Infinity	(1) प्रेरकत्व (3) धारिता 116. निर्देशात्मक युग्मक में: (1) वियोजन (dB) युग्मन र् (2) युग्मन (dB) वियोजन (dB) वियोजन (dB) वियोजन (dB) वियोजन (dB) (युग्मन) 117. एक वृत्ताकार तरंगपथक में, (1) TE ₀₁ (3) TE ₂₀ 118. क्लिस्ट्रोन ऐम्प्लीफायर में, नि (1) बंचर (3) संवेधन गन 119. एक अभिलक्षणिक प्रतिबाधा के शुद्ध प्रतिधात पर अंतक (1) 10 (3) 1 120. संचरण लाइन का वेग कारव	(4) L तथा C श्रेणी में जमा दिशिकता के बराबर होता है जमा दिशिकता के बराबर होता है जमा दिशिकता के बराबर होता है जमा युग्मन के बराबर होता है) (दिशिकता) के बराबर होता है प्रभावी विषा है: (2) TE₁₁ (4) TE₂₁ वेश गुहिका कहलाती है: (2) प्रग्राही (4) संग्राही Z₀ की हानिविहीन लाइन ─jZ₀ मान हो गई। VSWR है: (2) 2 (4) अनंत
(1) 10 (2) 2 (1) 10 (2) 2 (2) (3) 1 (4) Infinity (3) 1 (4) अनंत 120. The velocity factor of a transmission line depends on: (1) Temperature (1) तापमान	117. 118. 119.	behaves as: (1) Inductance (3) Capacitance In a directional coupler: (1) Isolation (dB) equals of (2) Coupling (dB) equals is (3) Directivity (dB) equals is (4) Isolation (dB) equals (d) Isolation (dB) equals (d) In a circular waveguide the (1) TE ₀₁ (3) TE ₂₀ In a klystron amplifier the (1) Buncher (3) Pierce gun A loss less line of characterminated in pure reactant (1) 10 (3) 1 The velocity factor of a trant (1) Temperature (2) Skin effect	(2) L and C in parallel (4) L and C in series coupling plus directivity colation plus coupling coupling) (directivity) coupling coupling coupling coupling (directivity) coupling coupling coupling coupling	(1) प्रेरकत्व (3) धारिता 116. निर्देशात्मक युग्मक में: (1) वियोजन (dB) युग्मन र् (2) युग्मन (dB) वियोजन (dB) वियोजन (dB) वियोजन (dB) वियोजन (dB) (युग्मन) 117. एक वृत्ताकार तरंगपथक में, (1) TE ₀₁ (3) TE ₂₀ 118. क्लिस्ट्रोन ऐम्प्लीफायर में, नि (1) बंचर (3) संवेधन गन 119. एक अभिलक्षणिक प्रतिबाधा के शुद्ध प्रतिधात पर अंतक (1) 10 (3) 1 120. संचरण लाइन का वेग कारव (1) तापमान (2) उपरिस्तर प्रभाव	(4) L तथा C श्रेणी में जमा दिशिकता के बराबर होता है जमा दिशिकता के बराबर होता है जमा दिशिकता के बराबर होता है जमा युग्मन के बराबर होता है) (दिशिकता) के बराबर होता है प्रभावी विधा है: (2) TE₁₁ (4) TE₂₁ वेश गुहिका कहलाती है: (2) प्रग्राही (4) संग्राही Z₀ की हानिविहीन लाइन -jZ₀ मान हो गई। VSWR है: (2) 2 (4) अनंत 5 निम्न पर निर्भर करता है: